matrix_nms_op.cc 15.9 KB
Newer Older
Y
Yang Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
15
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yang Zhang 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "paddle/fluid/operators/detection/nms_util.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class MatrixNMSOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MatrixNMS");
    OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MatrixNMS");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MatrixNMS");
    auto box_dims = ctx->GetInputDim("BBoxes");
    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(score_size == 3, true,
                        platform::errors::InvalidArgument(
                            "The rank of Input(Scores) must be 3. "
                            "But received rank = %d.",
                            score_size));
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
                        platform::errors::InvalidArgument(
                            "The rank of Input(BBoxes) must be 3."
                            "But received rank = %d.",
                            box_dims.size()));
      PADDLE_ENFORCE_EQ(box_dims[2] == 4, true,
                        platform::errors::InvalidArgument(
                            "The last dimension of Input (BBoxes) must be 4, "
                            "represents the layout of coordinate "
                            "[xmin, ymin, xmax, ymax]."));
      PADDLE_ENFORCE_EQ(
          box_dims[1], score_dims[2],
          platform::errors::InvalidArgument(
              "The 2nd dimension of Input(BBoxes) must be equal to "
              "last dimension of Input(Scores), which represents the "
              "predicted bboxes."
              "But received box_dims[1](%s) != socre_dims[2](%s)",
              box_dims[1], score_dims[2]));
    }
    ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    ctx->SetOutputDim("Index", {box_dims[1], 1});
63 64 65
    if (ctx->HasOutput("RoisNum")) {
      ctx->SetOutputDim("RoisNum", {-1});
    }
Y
Yang Zhang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
      ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
        platform::CPUPlace());
  }
};

template <typename T, bool gaussian>
struct decay_score;

template <typename T>
struct decay_score<T, true> {
  T operator()(T iou, T max_iou, T sigma) {
    return std::exp((max_iou * max_iou - iou * iou) * sigma);
  }
};

template <typename T>
struct decay_score<T, false> {
  T operator()(T iou, T max_iou, T sigma) {
    return (1. - iou) / (1. - max_iou);
  }
};

template <typename T, bool gaussian>
void NMSMatrix(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T post_threshold,
               const float sigma, const int64_t top_k, const bool normalized,
               std::vector<int>* selected_indices,
               std::vector<T>* decayed_scores) {
  int64_t num_boxes = bbox.dims()[0];
  int64_t box_size = bbox.dims()[1];

  auto score_ptr = scores.data<T>();
  auto bbox_ptr = bbox.data<T>();

  std::vector<int32_t> perm(num_boxes);
  std::iota(perm.begin(), perm.end(), 0);
  auto end = std::remove_if(perm.begin(), perm.end(),
                            [&score_ptr, score_threshold](int32_t idx) {
                              return score_ptr[idx] <= score_threshold;
                            });

  auto sort_fn = [&score_ptr](int32_t lhs, int32_t rhs) {
    return score_ptr[lhs] > score_ptr[rhs];
  };

  int64_t num_pre = std::distance(perm.begin(), end);
  if (num_pre <= 0) {
    return;
  }
  if (top_k > -1 && num_pre > top_k) {
    num_pre = top_k;
  }
  std::partial_sort(perm.begin(), perm.begin() + num_pre, end, sort_fn);

  std::vector<T> iou_matrix((num_pre * (num_pre - 1)) >> 1);
  std::vector<T> iou_max(num_pre);

  iou_max[0] = 0.;
  for (int64_t i = 1; i < num_pre; i++) {
    T max_iou = 0.;
    auto idx_a = perm[i];
    for (int64_t j = 0; j < i; j++) {
      auto idx_b = perm[j];
      auto iou = JaccardOverlap<T>(bbox_ptr + idx_a * box_size,
                                   bbox_ptr + idx_b * box_size, normalized);
      max_iou = std::max(max_iou, iou);
      iou_matrix[i * (i - 1) / 2 + j] = iou;
    }
    iou_max[i] = max_iou;
  }

  if (score_ptr[perm[0]] > post_threshold) {
    selected_indices->push_back(perm[0]);
    decayed_scores->push_back(score_ptr[perm[0]]);
  }

  decay_score<T, gaussian> decay_fn;
  for (int64_t i = 1; i < num_pre; i++) {
    T min_decay = 1.;
    for (int64_t j = 0; j < i; j++) {
      auto max_iou = iou_max[j];
      auto iou = iou_matrix[i * (i - 1) / 2 + j];
      auto decay = decay_fn(iou, max_iou, sigma);
      min_decay = std::min(min_decay, decay);
    }
    auto ds = min_decay * score_ptr[perm[i]];
    if (ds <= post_threshold) continue;
    selected_indices->push_back(perm[i]);
    decayed_scores->push_back(ds);
  }
}

template <typename T>
class MatrixNMSKernel : public framework::OpKernel<T> {
 public:
  size_t MultiClassMatrixNMS(const Tensor& scores, const Tensor& bboxes,
                             std::vector<T>* out, std::vector<int>* indices,
                             int start, int64_t background_label,
                             int64_t nms_top_k, int64_t keep_top_k,
                             bool normalized, T score_threshold,
                             T post_threshold, bool use_gaussian,
                             float gaussian_sigma) const {
    std::vector<int> all_indices;
    std::vector<T> all_scores;
    std::vector<T> all_classes;
    all_indices.reserve(scores.numel());
    all_scores.reserve(scores.numel());
    all_classes.reserve(scores.numel());

    size_t num_det = 0;
    auto class_num = scores.dims()[0];
    Tensor score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      score_slice = scores.Slice(c, c + 1);
      if (use_gaussian) {
        NMSMatrix<T, true>(bboxes, score_slice, score_threshold, post_threshold,
                           gaussian_sigma, nms_top_k, normalized, &all_indices,
                           &all_scores);
      } else {
        NMSMatrix<T, false>(bboxes, score_slice, score_threshold,
                            post_threshold, gaussian_sigma, nms_top_k,
                            normalized, &all_indices, &all_scores);
      }
      for (size_t i = 0; i < all_indices.size() - num_det; i++) {
        all_classes.push_back(static_cast<T>(c));
      }
      num_det = all_indices.size();
    }

    if (num_det <= 0) {
      return num_det;
    }

    if (keep_top_k > -1) {
      auto k = static_cast<size_t>(keep_top_k);
      if (num_det > k) num_det = k;
    }

    std::vector<int32_t> perm(all_indices.size());
    std::iota(perm.begin(), perm.end(), 0);

    std::partial_sort(perm.begin(), perm.begin() + num_det, perm.end(),
                      [&all_scores](int lhs, int rhs) {
                        return all_scores[lhs] > all_scores[rhs];
                      });

    for (size_t i = 0; i < num_det; i++) {
      auto p = perm[i];
      auto idx = all_indices[p];
      auto cls = all_classes[p];
      auto score = all_scores[p];
      auto bbox = bboxes.data<T>() + idx * bboxes.dims()[1];
      (*indices).push_back(start + idx);
      (*out).push_back(cls);
      (*out).push_back(score);
      for (int j = 0; j < bboxes.dims()[1]; j++) {
        (*out).push_back(bbox[j]);
      }
    }

    return num_det;
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
    auto* outs = ctx.Output<LoDTensor>("Out");
    auto* index = ctx.Output<LoDTensor>("Index");

    auto background_label = ctx.Attr<int>("background_label");
    auto nms_top_k = ctx.Attr<int>("nms_top_k");
    auto keep_top_k = ctx.Attr<int>("keep_top_k");
    auto normalized = ctx.Attr<bool>("normalized");
    auto score_threshold = ctx.Attr<float>("score_threshold");
    auto post_threshold = ctx.Attr<float>("post_threshold");
    auto use_gaussian = ctx.Attr<bool>("use_gaussian");
    auto gaussian_sigma = ctx.Attr<float>("gaussian_sigma");

    auto score_dims = scores->dims();
    auto batch_size = score_dims[0];
    auto num_boxes = score_dims[2];
    auto box_dim = boxes->dims()[2];
    auto out_dim = box_dim + 2;

    Tensor boxes_slice, scores_slice;
    size_t num_out = 0;
    std::vector<size_t> offsets = {0};
    std::vector<T> detections;
    std::vector<int> indices;
266
    std::vector<int> num_per_batch;
Y
Yang Zhang 已提交
267 268
    detections.reserve(out_dim * num_boxes * batch_size);
    indices.reserve(num_boxes * batch_size);
269
    num_per_batch.reserve(batch_size);
Y
Yang Zhang 已提交
270 271 272 273 274 275 276 277 278 279 280
    for (int i = 0; i < batch_size; ++i) {
      scores_slice = scores->Slice(i, i + 1);
      scores_slice.Resize({score_dims[1], score_dims[2]});
      boxes_slice = boxes->Slice(i, i + 1);
      boxes_slice.Resize({score_dims[2], box_dim});
      int start = i * score_dims[2];
      num_out = MultiClassMatrixNMS(
          scores_slice, boxes_slice, &detections, &indices, start,
          background_label, nms_top_k, keep_top_k, normalized, score_threshold,
          post_threshold, use_gaussian, gaussian_sigma);
      offsets.push_back(offsets.back() + num_out);
281
      num_per_batch.emplace_back(num_out);
Y
Yang Zhang 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294
    }

    int64_t num_kept = offsets.back();
    if (num_kept == 0) {
      outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
      index->mutable_data<int>({0, 1}, ctx.GetPlace());
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
      index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
      std::copy(detections.begin(), detections.end(), outs->data<T>());
      std::copy(indices.begin(), indices.end(), index->data<int>());
    }

295 296 297 298 299 300
    if (ctx.HasOutput("RoisNum")) {
      auto* rois_num = ctx.Output<Tensor>("RoisNum");
      rois_num->mutable_data<int>({batch_size}, ctx.GetPlace());
      std::copy(num_per_batch.begin(), num_per_batch.end(),
                rois_num->data<int>());
    }
Y
Yang Zhang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    framework::LoD lod;
    lod.emplace_back(offsets);
    outs->set_lod(lod);
    index->set_lod(lod);
  }
};

class MatrixNMSOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("BBoxes",
             "(Tensor) A 3-D Tensor with shape "
             "[N, M, 4] represents the predicted locations of M bounding boxes"
             ", N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
             "[xmin, ymin, xmax, ymax], when box size equals to 4.");
    AddInput("Scores",
             "(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
             " Please note, M is equal to the 2nd dimension of BBoxes. ");
    AddAttr<int>(
        "background_label",
        "(int, default: 0) "
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
        .SetDefault(0);
    AddAttr<float>("score_threshold",
                   "(float) "
                   "Threshold to filter out bounding boxes with low "
                   "confidence score.");
    AddAttr<float>("post_threshold",
                   "(float, default 0.) "
                   "Threshold to filter out bounding boxes with low "
                   "confidence score AFTER decaying.")
        .SetDefault(0.);
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
                 "confidences after the filtering detections based on "
                 "score_threshold");
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
    AddAttr<bool>("normalized",
                  "(bool, default true) "
                  "Whether detections are normalized.")
        .SetDefault(true);
    AddAttr<bool>("use_gaussian",
                  "(bool, default false) "
                  "Whether to use Gaussian as decreasing function.")
        .SetDefault(false);
    AddAttr<float>("gaussian_sigma",
                   "(float) "
                   "Sigma for Gaussian decreasing function, only takes effect ",
                   "when 'use_gaussian' is enabled.")
        .SetDefault(2.);
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
              "[label, confidence, xmin, ymin, xmax, ymax]. "
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.");
371 372
    AddOutput("RoisNum", "(Tensor), Number of RoIs in each images.")
        .AsDispensable();
Y
Yang Zhang 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386
    AddComment(R"DOC(
This operator does multi-class matrix non maximum suppression (NMS) on batched
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator decays boxes score according to the
Matrix NMS scheme.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
387
means there is no detected bbox for this image. Now this operator has one more
388
output, which is RoisNum. The size of RoisNum is N, RoisNum[i] means the number of 
389
detected bbox for this image.
Y
Yang Zhang 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

For more information on Matrix NMS, please refer to:
https://arxiv.org/abs/2003.10152
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(
    matrix_nms, ops::MatrixNMSOp, ops::MatrixNMSOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(matrix_nms, ops::MatrixNMSKernel<float>,
                       ops::MatrixNMSKernel<double>);
407 408 409 410 411
REGISTER_OP_VERSION(matrix_nms)
    .AddCheckpoint(
        R"ROC(Upgrade matrix_nms: add a new output [RoisNum].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewOutput(
            "RoisNum", "The number of RoIs in each image."));