layer_norm_op.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/layer_norm_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
chengduoZH 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
30 31 32 33 34
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance",
                   "LayerNorm");
C
chengduoZH 已提交
35

C
chengduoZH 已提交
36 37
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
38 39 40 41 42 43 44
    PADDLE_ENFORCE_LT(
        begin_norm_axis, x_dim.size(),
        platform::errors::InvalidArgument(
            "'begin_norm_axis' must be less than the dimensions of X,"
            "But received 'begin_norm_axis' is [%d],"
            "received the dimensions of X is [%d].",
            begin_norm_axis, x_dim.size()));
C
chengduoZH 已提交
45 46 47

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
48
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
49
    if (ctx->HasInput("Scale")) {
50 51 52 53 54 55
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Scale) must be 1, but "
                            "received dimensions of"
                            "Input(Scale) is [%d]",
                            ctx->GetInputDim("Scale").size()));
P
phlrain 已提交
56 57

      if (ctx->IsRuntime()) {
58 59 60 61 62 63 64 65 66
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Scale")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Scale) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Scale) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Scale) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
67
      }
C
chengduoZH 已提交
68 69
    }
    if (ctx->HasInput("Bias")) {
70 71 72 73 74 75
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Bias) must be 1, but "
                            "received dimensions of"
                            "Input(Bias) is [%d]",
                            ctx->GetInputDim("Bias").size()));
P
phlrain 已提交
76
      if (ctx->IsRuntime()) {
77 78 79 80 81 82 83 84 85
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Bias")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Bias) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Bias) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Bias) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
86
      }
C
chengduoZH 已提交
87
    }
C
chengduoZH 已提交
88

C
chengduoZH 已提交
89
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
90 91
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
92 93 94 95 96 97
    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
98
  void Make() override {
Y
yuyang18 已提交
99
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
100
    AddInput("Scale",
Y
yuyang18 已提交
101
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
102 103 104
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
105
    AddInput("Bias",
Y
yuyang18 已提交
106
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
107 108 109
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
110 111 112
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
113 114 115
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
116
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
117 118
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
119 120 121 122 123
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
C
chengduoZH 已提交
124
        });
C
chengduoZH 已提交
125
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
126
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
127
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
128
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
129 130 131
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
132 133 134 135
                            platform::errors::InvalidArgument(
                                "'begin_norm_axis' in Op(LayerNorm) should be"
                                "greater than zero. But received [%d].",
                                begin_norm_axis));
C
chengduoZH 已提交
136
        });
C
chengduoZH 已提交
137 138

    AddComment(R"DOC(
Y
yuyang18 已提交
139 140 141 142 143 144 145 146
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
147 148 149 150 151 152 153 154 155 156
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
157 158 159 160 161 162
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance",
                   "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "LayerNormGrad");
C
chengduoZH 已提交
163 164 165

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
166
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
167 168
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
169 170
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
171 172
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
173
      ctx->SetOutputDim(framework::GradVarName("Bias"),
174
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
175 176 177 178 179 180 181
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
182 183
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::NotFound(
                                     "Y@GRAD of LayerNorm Op is not found."));
C
chengduoZH 已提交
184 185 186 187 188 189
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
190 191
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
Y
Yu Yang 已提交
192
    return framework::OpKernelType(t->type(), ctx.GetPlace());
C
chengduoZH 已提交
193 194 195
  }
};

H
hong 已提交
196 197
template <typename T>
class LayerNormGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
198
 public:
H
hong 已提交
199
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
200 201

 protected:
202
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
203
    op->SetType("layer_norm_grad");
H
hong 已提交
204 205 206 207 208 209
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mean", this->Output("Mean"));
    op->SetInput("Variance", this->Output("Variance"));
    if (this->HasInput("Scale")) {
      op->SetInput("Scale", this->Input("Scale"));
      op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
S
sneaxiy 已提交
210 211
    }

H
hong 已提交
212
    if (this->HasInput("Bias")) {
213
      op->SetInput("Bias", this->Input("Bias"));
H
hong 已提交
214
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
215 216
    }

H
hong 已提交
217 218 219
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
220 221 222
  }
};

223 224 225
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LayerNormGradNoNeedBufferVarInference,
                                    "Bias");

C
chengduoZH 已提交
226 227 228 229
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
230
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
H
hong 已提交
231 232
                  ops::LayerNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::LayerNormGradOpMaker<paddle::imperative::OpBase>);
233 234
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp,
                  ops::LayerNormGradNoNeedBufferVarInference);
C
chengduoZH 已提交
235
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
236 237
    layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
238 239
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
240 241
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, double>);