operator.cc 41.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
35
DECLARE_bool(check_nan_inf);
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
37 38 39
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
40

Q
Qiao Longfei 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47 48 49
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
50

Q
qiaolongfei 已提交
51 52
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
53
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
54
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
55
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
56 57 58 59 60
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

61 62
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
63
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
64 65
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
66 67
  }

M
minqiyang 已提交
68 69 70 71 72 73 74 75 76
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
Y
Yu Yang 已提交
99
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
100
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
105
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
106
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

112 113 114 115 116 117
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
118 119
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
120 121 122 123 124
  }

  return -1;
}

125
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
126 127 128 129 130 131 132
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
133 134 135
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
136 137 138 139 140
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
141 142 143 144 145
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
146
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
147 148 149 150 151 152
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
153
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
154 155 156 157 158 159
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

160
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
161 162 163
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
164
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
165
      PADDLE_THROW("Cannot run operator on place %s", place);
166
#else
P
peizhilin 已提交
167 168
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
169
#endif
P
peizhilin 已提交
170
    }
P
peizhilin 已提交
171

P
peizhilin 已提交
172 173 174 175 176
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
177
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
178 179 180 181 182
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
183
  } catch (platform::EnforceNotMet& exception) {
184
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
185
    throw std::move(exception);
P
peizhilin 已提交
186 187
  } catch (...) {
    std::rethrow_exception(std::current_exception());
188
  }
189 190
}

191
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
192
  return inputs_.find(name) != inputs_.end();
193 194
}

195
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
196
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
197
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
198 199
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
200
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
201 202
}

Y
Yu Yang 已提交
203 204
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
205
  auto it = inputs_.find(name);
206 207
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
208
  return it->second;
Y
Yan Chunwei 已提交
209 210
}

211
bool OperatorBase::HasOutputs(const std::string& name) const {
212
  if (outputs_.find(name) != outputs_.end()) {
213 214 215 216 217 218
    return true;
  } else {
    return false;
  }
}

219
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
220
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
221
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
222 223
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
224
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
225 226
}

Y
Yu Yang 已提交
227 228
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
229
  auto it = outputs_.find(name);
230 231
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
232
  return it->second;
Y
Yan Chunwei 已提交
233 234
}

235
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
236
  std::stringstream ss;
Y
Yu Yang 已提交
237
  ss << "Op(" << type_ << "), inputs:{";
238 239 240 241 242 243 244

  std::unordered_set<std::string> no_need_buffer_vars;
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
        Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs());
  }

Y
Yu Yang 已提交
245 246
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
247
    bool is_no_need_buffer_var = (no_need_buffer_vars.count(input.first) > 0);
Y
Yu Yang 已提交
248 249
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
250 251
      auto var_name = input.second[i];
      ss << var_name;
252
      if (scope) {
Q
Qiao Longfei 已提交
253 254 255 256 257 258 259
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
260 261 262
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
263
          ss << ":" << dtype;
264 265
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
266
        }
267
      }
Y
Yu Yang 已提交
268 269 270
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
271
    }
Y
Yu Yang 已提交
272
    ss << "]";
Y
Yu Yang 已提交
273 274
    ++it;
    if (it != inputs_.end()) {
275 276
      ss << ", ";
    }
Q
Qiao Longfei 已提交
277
  }
Y
Yu Yang 已提交
278
  ss << "}, outputs:{";
Y
Yu Yang 已提交
279 280
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
281 282
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
283 284
      auto var_name = output.second[i];
      ss << var_name;
285
      if (scope) {
Q
Qiao Longfei 已提交
286 287 288 289 290 291 292
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
293 294
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
295 296
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
297
        }
298
      }
Y
Yu Yang 已提交
299 300 301
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
302
    }
Y
Yu Yang 已提交
303
    ss << "]";
Y
Yu Yang 已提交
304 305
    ++it;
    if (it != outputs_.end()) {
306 307
      ss << ", ";
    }
Q
Qiao Longfei 已提交
308
  }
Y
Yu Yang 已提交
309
  ss << "}.";
Q
Qiao Longfei 已提交
310 311 312
  return ss.str();
}

Y
Yu Yang 已提交
313
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
314 315
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
316
                           const AttributeMap& attrs)
S
sneaxiy 已提交
317 318 319 320 321 322
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
323 324
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
325
}
326

Q
qijun 已提交
327 328
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
329
  for (auto& o : inputs_) {
Q
qijun 已提交
330 331 332 333 334 335
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
336 337 338 339 340 341 342 343 344 345
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
346
  auto& info = Info();
Y
Yu Yang 已提交
347 348

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
349
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
350 351 352 353 354 355 356 357 358
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
359 360
}

361
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
362
  if (info_ == nullptr || info_->proto_ == nullptr) return;
363

S
sneaxiy 已提交
364
  for (auto& in : info_->Proto().inputs()) {
365 366 367 368
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
369 370
  }

S
sneaxiy 已提交
371
  for (auto& out : info_->Proto().outputs()) {
372 373 374 375 376
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
393
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
394
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
395 396
}

C
chengduo 已提交
397
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
398 399 400 401
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
402
  } else {
Y
Yang Yang 已提交
403
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
404
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
405 406 407
  }
}

C
chengduo 已提交
408
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
409
  if (var->IsType<LoDTensor>()) {
410
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
411
  } else if (var->IsType<SelectedRows>()) {
412
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
413
  } else {
Y
Yang Yang 已提交
414
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
415
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
416 417 418
  }
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
451 452 453 454 455 456 457 458 459 460
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
461
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
462 463 464 465 466 467 468 469 470
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

471
template <>
472
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
473
  return Input<LoDTensor>(name);
474 475 476
}

template <>
477
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
478
    const std::string& name) const {
X
Xin Pan 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
492
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
493 494 495 496 497
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

498
template <>
499
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
500
  return Output<LoDTensor>(name);
501 502 503
}

template <>
504
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
505
    const std::string& name) const {
506 507 508 509 510
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
511
  std::vector<Tensor*> res;
512 513 514 515 516
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
517
                 });
518 519 520
  return res;
}

Y
Yu Yang 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

536 537
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
538 539
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
540
      : op_(op), ctx_(ctx) {}
541 542

  bool HasInput(const std::string& name) const override {
543
    // has only one input
X
Xin Pan 已提交
544
    const auto& ins = ctx_.inputs;
545 546
    auto it = ins.find(name);
    if (it == ins.end()) {
547 548
      return false;
    }
549
    const auto& in = it->second;
X
Xin Pan 已提交
550
    if (in.size() == 0) return false;
T
tensor-tang 已提交
551
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
552
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
553
    return in[0] != nullptr;
554 555 556
  }

  bool HasOutput(const std::string& name) const override {
557
    // has only one output
X
Xin Pan 已提交
558
    const auto& outs = ctx_.outputs;
559 560
    auto it = outs.find(name);
    if (it == outs.end()) {
561 562
      return false;
    }
563
    const auto& out = it->second;
X
Xin Pan 已提交
564
    if (out.size() == 0) {
565 566
      return false;
    }
T
tensor-tang 已提交
567 568
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
569
    return out[0] != nullptr;
570 571 572
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
573 574
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
575
    if (it == ins.end() || it->second.empty()) {
576 577
      return false;
    }
X
Xin Pan 已提交
578 579
    for (auto& input : it->second) {
      if (input == nullptr) {
580 581 582 583 584 585 586
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
587 588
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
589
    if (it == outs.end() || it->second.empty()) {
590 591
      return false;
    }
X
Xin Pan 已提交
592 593
    for (auto& output : it->second) {
      if (output == nullptr) {
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

612 613
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
614 615 616 617 618 619 620 621 622
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
623 624

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
625
                   "The type of %s and %s is not the same.", in, out);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
644 645
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
646 647 648 649 650 651 652 653
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
654
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
655
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
656 657
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
658
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
659 660
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
661

M
mozga-intel 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
681 682
  }

C
chengduo 已提交
683 684 685 686 687
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

688 689
  bool IsRuntime() const override { return true; }

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
722 723 724 725 726 727 728 729 730 731
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

746
 protected:
X
Xin Pan 已提交
747
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
748
    PADDLE_ENFORCE_NOT_NULL(var);
749 750 751 752 753
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
754
      PADDLE_THROW(
X
Xin Pan 已提交
755
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
756
          "type_id is %s.",
S
sneaxiy 已提交
757
          ToTypeName(var->Type()));
F
fengjiayi 已提交
758 759 760
    }
  }

X
Xin Pan 已提交
761 762 763 764 765 766 767 768
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
769
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
770
    PADDLE_THROW("Only compile time support this method");
771 772
  }

X
Xin Pan 已提交
773
  void SetDim(Variable* var, const DDim& dim) {
774 775 776 777 778
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
779
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
780
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
781 782 783 784 785 786 787 788 789 790 791 792
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
793 794 795
    }
  }

F
fengjiayi 已提交
796 797
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
798
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
799 800
  }

X
Xin Pan 已提交
801 802 803 804 805 806 807 808 809 810 811
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
812 813 814
    return ToVarType(var->Type());
  }

815 816 817 818 819 820 821 822 823 824 825 826 827 828
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
829 830
  }

831
  const OperatorBase& op_;
X
Xin Pan 已提交
832
  const RuntimeContext& ctx_;
833 834
};

835 836
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
837 838 839 840
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
841 842
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
843 844 845
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
846
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
847
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
848
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
849 850
}

B
baojun-nervana 已提交
851
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
852 853 854
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
855 856 857
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
858 859 860 861 862 863 864 865 866 867
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
868 869
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
870 871
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
872 873 874
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
875
      HasAttr(kAllKernelsMustComputeRuntimeShape))
876 877
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
878 879 880 881
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
882 883 884 885 886 887
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
888 889 890 891 892 893 894 895
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
896
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
897
  auto* dev_ctx = pool.Get(place);
898

899
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
900
    ChooseKernel(*runtime_ctx, scope, place);
901 902
  }

L
Liu Yiqun 已提交
903
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
904

Y
yuyang18 已提交
905 906
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
907
  auto* transfer_scope =
908
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
909

Y
yuyang18 已提交
910 911 912 913
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

914 915
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
916
  }
Q
QI JUN 已提交
917

918
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
919
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
920 921
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
922 923
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
924 925
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
926

Y
yuyang18 已提交
927 928 929
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
930 931
  }

D
dzhwinter 已提交
932
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
933
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
934
    dev_ctx->Wait();
D
dzhwinter 已提交
935
  }
C
chengduoZH 已提交
936

P
pkpk 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
956 957
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
958
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
959 960
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
961
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
962
      } else if (var->IsType<framework::SelectedRows>()) {
963 964
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
965 966 967
      }
    }
  }
968 969 970 971 972 973 974

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
975
}
X
Xin Pan 已提交
976

L
Liu Yiqun 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1013 1014 1015 1016 1017
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1018 1019
}

Y
yuyang18 已提交
1020 1021 1022 1023
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1024
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1025 1026 1027
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1028
    auto* original_tensor =
C
chengduo 已提交
1029
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1030
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1031 1032
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1033
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1034 1035 1036 1037
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1038
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1039
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1040 1041
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1042
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1053
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1054 1055 1056 1057 1058
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1059
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1060
              << " in Operator " << type_;
S
sneaxiy 已提交
1061 1062 1063
      continue;
    }

X
Xin Pan 已提交
1064 1065 1066 1067
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1068
      auto* var = input_vars[i];
X
Xin Pan 已提交
1069

Y
yuyang18 已提交
1070
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1071
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1072 1073 1074
        continue;
      }

C
chengduo 已提交
1075
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1093 1094
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1108 1109 1110 1111 1112 1113 1114 1115 1116
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1117 1118
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1119
        enable_cache_transfer_scope_ = true;
1120
      }
1121
      if (!new_scope) {
Y
yuyang18 已提交
1122 1123
        new_scope = &scope.NewScope();
      }
1124 1125 1126 1127
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1128
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1129 1130 1131
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1132
      if (enable_cache_runtime_context_) {
1133 1134
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1135 1136

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1137
      input_vars[i] = trans_var;
1138

Y
yuyang18 已提交
1139
      Tensor out;
Y
yuyang18 已提交
1140
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1141 1142 1143 1144 1145 1146
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  const std::vector<const Variable*> vars = ctx.MultiInputVar(name);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
      }
      if (t != nullptr) {
        PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                          "The Tensor in the %s Op's Input Variable %s(%s) is "
                          "not initialized.",
                          Type(), name, ctx.Inputs(name).at(i));
        proto::VarType::Type tmp = t->type();
        PADDLE_ENFORCE(tmp == *data_type || *data_type == dafault_data_type,
                       "The DataType of %s Op's duplicable Variable %s must be "
                       "consistent. The current variable type is (%s), but the "
                       "previous variable type is (%s).",
                       Type(), name, DataTypeToString(tmp),
                       DataTypeToString(*data_type));
        *data_type = tmp;
      }
    }
  }
}

1183
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1184
    const ExecutionContext& ctx) const {
1185 1186 1187
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1188
  for (auto& input : this->inputs_) {
1189
    ParseInputDataType(ctx, input.first, &data_type);
Y
Yu Yang 已提交
1190
  }
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1207
  return data_type;
Y
Yu Yang 已提交
1208
}
1209

1210 1211 1212 1213 1214 1215 1216 1217
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1218 1219
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1220 1221
}

Q
Qiao Longfei 已提交
1222
}  // namespace framework
L
liaogang 已提交
1223
}  // namespace paddle