set_value_op.cc 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/set_value_op.h"
#include <string>
17
#include "paddle/fluid/framework/op_version_registry.h"
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
namespace paddle {
namespace operators {

class SetValue : public framework::OperatorWithKernel {
 public:
  SetValue(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "SetValue");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SetValue");
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_LT(
        in_dims.size(), 7,
        platform::errors::InvalidArgument(
            "The rank of input should be less than 7, but received %d.",
            in_dims.size()));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
60
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
61
  }
62 63 64 65 66 67 68 69 70 71 72

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StepsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
73 74 75 76 77
};

class SetValueMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
78
    // Input
79 80 81
    AddInput("Input", "(Tensor) Input tensor of set_value operator.");
    AddInput("ValueTensor", "(Tensor) Value tensor of set_value operator.")
        .AsDispensable();
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    AddInput("StartsTensorList",
             "(vector<Tensor<int32>>, optional) If provided, set_value will "
             "use this. The shape of the tensor in vector must be [1]."
             "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput("EndsTensorList",
             "(vector<Tensor<int32>>, optional) If provided, set_value will "
             "use this. The shape of the tensor in vector must BE [1]."
             "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();

    AddInput("StepsTensorList",
             "(vector<Tensor<int32>>, optional) If provided, set_value will "
             "use this. The shape of the tensor in vector must BE [1]."
             "It has higher priority compare with attr(steps).")
        .AsDuplicable()
        .AsDispensable();

    // Output
103 104 105 106
    AddOutput("Out",
              "(Tensor) Output tensor of set_value operator. The output is the "
              "same Tensor as input");

107
    // Attr
108 109 110 111 112 113 114 115 116 117
    AddAttr<int>("dtype", "data type of input.")
        .InEnum(
            {framework::proto::VarType::BOOL, framework::proto::VarType::INT32,
             framework::proto::VarType::INT64, framework::proto::VarType::FP32,
             framework::proto::VarType::FP64})
        .SetDefault(framework::proto::VarType::FP32);
    AddAttr<std::vector<int64_t>>(
        "axes", "(list<int64_t>) Axes that `starts` and `ends` apply to.");
    AddAttr<std::vector<int64_t>>(
        "starts",
118 119
        "(list<int64_t>) Starting indices of corresponding axis in `axes`.")
        .SetDefault({});
120 121
    AddAttr<std::vector<int64_t>>(
        "ends",
122 123 124 125 126
        "(list<int64_t>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
    AddAttr<std::vector<int64_t>>(
        "steps", "(list<int64_t>) Stride step from the start to the end.")
        .SetDefault({});
127 128 129
    AddAttr<std::vector<int64_t>>("decrease_axes",
                                  "(list<int>) The axes to decrease.")
        .SetDefault({});
Z
zyfncg 已提交
130 131
    AddAttr<std::vector<int64_t>>("none_axes", "(list<int>) The axes to none.")
        .SetDefault({});
132

133
    AddAttr<std::vector<int>>("bool_values", "Store the bool values.")
134
        .SetDefault({});
135
    AddAttr<std::vector<float>>("fp32_values", "Store the float32 values.")
136
        .SetDefault({});
137
    AddAttr<std::vector<int>>("int32_values", "Store the int32 values.")
138
        .SetDefault({});
139
    AddAttr<std::vector<int64_t>>("int64_values", "Store the int64 values.")
140
        .SetDefault({});
141
    AddAttr<std::vector<double>>("fp64_values", "Store the float64 values.")
142
        .SetDefault({});
143 144 145 146 147 148 149 150

    AddAttr<std::vector<int64_t>>("shape", "(vector<int64_t>) Shape of values.")
        .SetDefault({});
    AddComment(R"DOC(SetValue operator.
Assignment to a Tensor in static mode.
)DOC");
  }
};
151 152 153 154 155 156 157 158 159

template <typename T>
class SetValueGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    if (this->HasInput("ValueTensor")) {
160 161 162 163
      op->SetType("set_value_grad");

      op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
      op->SetInput("ValueTensor", this->Input("ValueTensor"));
164 165 166 167 168 169
      if (this->HasInput("StartsTensorList")) {
        op->SetInput("StartsTensorList", this->Input("StartsTensorList"));
      }
      if (this->HasInput("EndsTensorList")) {
        op->SetInput("EndsTensorList", this->Input("EndsTensorList"));
      }
170 171 172 173 174 175 176 177 178
      if (this->HasInput("StepsTensorList")) {
        op->SetInput("StepsTensorList", this->Input("StepsTensorList"));
      }

      op->SetAttrMap(this->Attrs());

      op->SetOutput(framework::GradVarName("ValueTensor"),
                    this->InputGrad("ValueTensor"));
      op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
179 180 181 182 183 184 185 186 187

    } else {
      op->SetType("assign");
      op->SetInput("X", this->OutputGrad("Out"));
      op->SetOutput("Out", this->InputGrad("Input"));
    }
  }
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
class SetValueGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "set_value_grad");

    auto in_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    PADDLE_ENFORCE_LT(
        in_dims.size(), 7,
        platform::errors::InvalidArgument(
            "The dimension of set_value_grad operator's input should be less "
            "than 7, but received dimension is %d.",
            in_dims.size()));

    if (ctx->HasOutput(framework::GradVarName("ValueTensor"))) {
      ctx->ShareDim("ValueTensor",
                    /*->*/ framework::GradVarName("ValueTensor"));
      ctx->ShareLoD("ValueTensor",
                    /*->*/ framework::GradVarName("ValueTensor"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto in_tensor = ctx.Input<Tensor>(framework::GradVarName("Out"));
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   in_tensor->place());
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StepsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

232 233
DECLARE_INPLACE_OP_INFERER(SetValueOpInplaceInferer, {"Input", "Out"});

234 235 236 237
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
238
namespace plat = paddle::platform;
239

240 241 242 243
REGISTER_OPERATOR(set_value, ops::SetValue, ops::SetValueMaker,
                  ops::SetValueGradMaker<paddle::framework::OpDesc>,
                  ops::SetValueGradMaker<paddle::imperative::OpBase>,
                  ops::SetValueOpInplaceInferer);
244 245 246

REGISTER_OP_CPU_KERNEL(
    set_value, ops::SetValueKernel<paddle::platform::CPUDeviceContext, int>,
247 248 249 250
    ops::SetValueKernel<plat::CPUDeviceContext, int64_t>,
    ops::SetValueKernel<plat::CPUDeviceContext, float>,
    ops::SetValueKernel<plat::CPUDeviceContext, double>,
    ops::SetValueKernel<plat::CPUDeviceContext, bool>);
251

252 253 254 255 256 257 258 259 260 261
REGISTER_OPERATOR(set_value_grad, ops::SetValueGrad);

REGISTER_OP_CPU_KERNEL(
    set_value_grad,
    ops::SetValueGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SetValueGradKernel<plat::CPUDeviceContext, int64_t>,
    ops::SetValueGradKernel<plat::CPUDeviceContext, float>,
    ops::SetValueGradKernel<plat::CPUDeviceContext, double>,
    ops::SetValueGradKernel<plat::CPUDeviceContext, bool>);

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
REGISTER_OP_VERSION(set_value)
    .AddCheckpoint(
        R"ROC(
Upgrade set_value, add 3 inputs [StartsTensorList, EndsTensorList, StepsTensorList] and 1 attribute [steps].
              )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewInput("StartsTensorList",
                      "If provided, set_value will use this.The shape of the "
                      "tensor in vector must be [1]. It has higher priority "
                      "compare with attr(starts).")
            .NewInput("EndsTensorList",
                      "If provided, set_value will use this.The shape of the "
                      "tensor in vector must be [1]. It has higher priority "
                      "compare with attr(ends).")
            .NewInput("StepsTensorList",
                      "If provided, set_value will use this.The shape of the "
                      "tensor in vector must be [1]. It has higher priority "
                      "compare with attr(steps).")
            .ModifyAttr("starts",
                        "Starting indices of corresponding axis in `axes`.",
                        std::vector<int64_t>{})
            .ModifyAttr("ends",
                        "Ending indices of corresponding axis in `axes`.",
                        std::vector<int64_t>{})
            .NewAttr("steps", "Stride step from the start to the end.",
287 288 289 290 291 292
                     std::vector<int64_t>{}))
    .AddCheckpoint(
        R"ROC(
Upgrade set_value, add 1 attribute [decrease_axes].
              )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
Z
zyfncg 已提交
293 294 295 296 297 298 299
            "decrease_axes", "The axes to decrease.", std::vector<int64_t>{}))
    .AddCheckpoint(
        R"ROC(
Upgrade set_value, add 1 attribute [none_axes].
              )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "none_axes", "The axes with none index.", std::vector<int64_t>{}));