average_accumulates_op.cc 8.7 KB
Newer Older
W
wanghaoshuang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/average_accumulates_op.h"

namespace paddle {
namespace operators {

template <>
W
wanghaoshuang 已提交
21
void GetAccumulators<paddle::platform::CPUDeviceContext>(
22 23
    const framework::ExecutionContext& ctx, int64_t* num_updates,
    int64_t* num_accumulates, int64_t* old_num_accumulates) {
W
wanghaoshuang 已提交
24 25 26
  auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
  auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
  auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
27

28 29 30
  *old_num_accumulates = in_old_num_accumulates->data<int64_t>()[0];
  *num_accumulates = in_num_accumulates->data<int64_t>()[0];
  *num_updates = in_num_updates->data<int64_t>()[0];
31 32 33
}

template <>
W
wanghaoshuang 已提交
34
void SetAccumulators<paddle::platform::CPUDeviceContext>(
35 36
    const framework::ExecutionContext& ctx, int64_t num_updates,
    int64_t num_accumulates, int64_t old_num_accumulates) {
W
wanghaoshuang 已提交
37 38 39
  auto* out_old_num_accumulates = ctx.Output<Tensor>("out_old_num_accumulates");
  auto* out_num_accumulates = ctx.Output<Tensor>("out_num_accumulates");
  auto* out_num_updates = ctx.Output<Tensor>("out_num_updates");
40

41 42 43
  out_old_num_accumulates->data<int64_t>()[0] = old_num_accumulates;
  out_num_accumulates->data<int64_t>()[0] = num_accumulates;
  out_num_updates->data<int64_t>()[0] = num_updates;
44 45 46 47 48 49 50 51
}

class AverageAccumulatesOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
52 53
        ctx->HasInput("param"),
        "Input (param) of average_accumulates op should not be null.");
54
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
55
        ctx->HasInput("in_sum_1"),
56 57
        "Input (sum_1) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
58
        ctx->HasInput("in_sum_2"),
59 60
        "Input (sum_2) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
61
        ctx->HasInput("in_sum_3"),
62
        "Input (sum_3) of average_accumulates op should not be null.");
W
wanghaoshuang 已提交
63 64 65 66 67
    PADDLE_ENFORCE(
        ctx->HasInput("in_num_accumulates"),
        "Input (in_num_accumulates) of average_accumulates op should "
        "not be null.");
    PADDLE_ENFORCE(ctx->HasInput("in_old_num_accumulates"),
68 69 70
                   "Input (old_num_accumulates) of average_accumulates op "
                   "should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
71
        ctx->HasInput("in_num_updates"),
72 73 74
        "Input (num_updates) of average_accumulates op should not be null.");

    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
75
        ctx->HasOutput("out_sum_1"),
76 77
        "Output (sum_1) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
78
        ctx->HasOutput("out_sum_2"),
79 80
        "Output (sum_2) of average_accumulates op should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
81
        ctx->HasOutput("out_sum_3"),
82
        "Output (sum_3) of average_accumulates op should not be null.");
W
wanghaoshuang 已提交
83
    PADDLE_ENFORCE(ctx->HasOutput("out_num_accumulates"),
84 85
                   "Output (num_accumulates) of average_accumulates op should "
                   "not be null.");
W
wanghaoshuang 已提交
86
    PADDLE_ENFORCE(ctx->HasOutput("out_old_num_accumulates"),
87 88 89
                   "Output (old_num_accumulates) of average_accumulates op "
                   "should not be null.");
    PADDLE_ENFORCE(
W
wanghaoshuang 已提交
90
        ctx->HasOutput("out_num_updates"),
91 92
        "Output (num_updates) of average_accumulates op should not be null.");

W
wanghaoshuang 已提交
93
    auto in_dim = ctx->GetInputDim("param");
94

W
wanghaoshuang 已提交
95 96 97 98 99 100
    ctx->SetOutputDim("out_sum_1", in_dim);
    ctx->SetOutputDim("out_sum_2", in_dim);
    ctx->SetOutputDim("out_sum_3", in_dim);
    ctx->SetOutputDim("out_num_accumulates", {1});
    ctx->SetOutputDim("out_old_num_accumulates", {1});
    ctx->SetOutputDim("out_num_updates", {1});
101 102 103 104 105
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
106 107
    return framework::OpKernelType(ctx.Input<Tensor>("param")->type(),
                                   ctx.GetPlace());
108 109 110 111 112
  }
};

class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
113
  void Make() override {
W
wanghaoshuang 已提交
114
    AddInput("param", "(Tensor), The parameter to be accumulated.");
W
wanghaoshuang 已提交
115
    AddInput("in_sum_1",
W
wanghaoshuang 已提交
116
             "(Tensor), A tensor used to store the parameter "
W
wanghaoshuang 已提交
117 118
             "sums with the same shape as input(param).");
    AddInput("in_sum_2",
W
wanghaoshuang 已提交
119
             "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
120 121 122 123
             "accumulating sums of parameter values with the same shape as "
             "input(param). It is used to avoid loss of precision due to too "
             "many sums.");
    AddInput("in_sum_3",
W
wanghaoshuang 已提交
124
             "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
125 126 127
             "accumulating sums of parameter values with the same shape as "
             "input(param).");
    AddInput("in_num_accumulates",
W
wanghaoshuang 已提交
128
             "(Tensor<int64_t>), The accumulating times of current window with "
W
wanghaoshuang 已提交
129
             "shape [1].");
W
wanghaoshuang 已提交
130 131 132 133
    AddInput(
        "in_old_num_accumulates",
        "(Tensor<int64_t>), The accumulating times of previous window with "
        "shape [1].");
W
wanghaoshuang 已提交
134
    AddInput("in_num_updates",
W
wanghaoshuang 已提交
135
             "(Tensor<int64_t>), The total number of batches used by trainning "
W
wanghaoshuang 已提交
136 137 138
             "before this batch with shape [1].");

    AddOutput("out_sum_1",
W
wanghaoshuang 已提交
139
              "(Tensor), A tensor used to store the "
W
wanghaoshuang 已提交
140 141
              "parameter sums with the same shape as input(param).");
    AddOutput("out_sum_2",
W
wanghaoshuang 已提交
142
              "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
143 144 145 146
              "accumulating sums of parameter values with the same shape as "
              "input(param). It is used to avoid loss of precision due to too "
              "many sums.");
    AddOutput("out_sum_3",
W
wanghaoshuang 已提交
147
              "(Tensor), A auxiliary tensor to help "
W
wanghaoshuang 已提交
148 149
              "accumulating sums of parameter values with the same shape as "
              "input(param).");
W
wanghaoshuang 已提交
150 151 152 153 154 155 156 157 158 159 160 161
    AddOutput(
        "out_num_accumulates",
        "(Tensor<int64_t>), The accumulating times of current window with "
        "shape [1].");
    AddOutput(
        "out_old_num_accumulates",
        "(Tensor<int64_t>) The accumulating times of previous window with "
        "shape [1].");
    AddOutput(
        "out_num_updates",
        "(Tensor<int64_t>), The total number of batches used by trainning "
        "before this batch with shape [1].");
W
wanghaoshuang 已提交
162 163

    AddAttr<float>("average_window",
W
wanghaoshuang 已提交
164 165 166 167 168 169 170 171 172 173 174 175
                   "(float, default 0) "
                   "The rate of average window size relative to num_updates.")
        .SetDefault(0);
    AddAttr<int64_t>("max_average_window",
                     "(int64_t) "
                     "Maximum size of average window. It suggests that the "
                     "number of mini-batches "
                     "in one pass is appropriate value to set.");
    AddAttr<int64_t>("min_average_window",
                     "(int64_t, default 10000L) "
                     "Minimu size of average window.")
        .SetDefault(10000L);
176 177 178

    AddComment(R"DOC(
AverageAccumulates Operator.
179
Accumulate the sum of parameter within sliding window. The size of sliding window is
W
wanghaoshuang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
determined by 'average_window', 'max_average_window' and 'min_average_window'.
Memory was shared by Input(in_sum_1) and Output(out_sum_1) which acts as an accumulator 'sum_1'.
'sum_2', 'sum_3', 'num_accumulates', 'old_num_accumulates' and 'num_updates' were the same as 'sum_1'.

All the accumulators were inited to zero before training.

And for a mini-batch in training, accumulators were computed as below steps:
    num_updates += 1
    num_accumulates += 1
    sum_1 += param
    if num_updates % kMaxNumAccumulates == 0:
        sum_2 += sum_1
        sum_1 = 0
    if num_accumulates >= min_average_window && num_accumulates >= min(max_average_window, num_updates * average_window):
        sum_3 = sum_1 + sum_2
        sum_1 = 0
        sum_2 = 0
        old_num_accumulates = num_accumulates
        num_accumulates = 0

200 201 202 203 204 205 206 207
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
wanghaoshuang 已提交
208
REGISTER_OPERATOR(average_accumulates, ops::AverageAccumulatesOp,
209 210 211
                  ops::AverageAccumulatesOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
212
    average_accumulates,
213 214
    ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, double>);