gaussian_random_op.cu 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
16
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/fill_constant_op.h"
Q
qijun 已提交
20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
28
  unsigned int offset_ = 0;
Q
qijun 已提交
29 30 31 32

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
33 34 35
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
36 37 38
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
Q
qijun 已提交
39
    thrust::normal_distribution<T> dist(mean_, std_);
Y
yaoxuefeng 已提交
40 41
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
Q
qijun 已提交
42 43 44 45 46
    return dist(rng);
  }
};

template <typename T>
Y
Yu Yang 已提交
47
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
48 49 50
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
51
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
52
    bool seed_flag = false;
Q
qijun 已提交
53 54 55
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
56
      seed_flag = true;
Q
qijun 已提交
57
    }
Y
Yu Yang 已提交
58 59
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Q
qijun 已提交
60
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
61 62 63 64 65
    const std::string op_type = "gaussian_random";
    auto shape = GetShape(context, op_type);
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

66
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
67 68 69 70 71 72 73

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
74
      int gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
75 76 77 78 79 80 81 82 83
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
Q
qijun 已提交
84 85 86
  }
};

87 88 89 90 91 92 93
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
94
    bool seed_flag = false;
95 96 97
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
98
      seed_flag = true;
99 100 101 102 103
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
104 105 106 107 108 109 110

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
111
      int gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
112 113 114 115 116 117 118 119 120
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed_offset.first,
                                             seed_offset.second));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
121 122
  }
};
Q
qijun 已提交
123 124
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
125

Q
QI JUN 已提交
126
REGISTER_OP_CUDA_KERNEL(gaussian_random,
127 128
                        paddle::operators::GPUGaussianRandomKernel<float>,
                        paddle::operators::GPUGaussianRandomKernel<double>);
129 130 131 132
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);