parallel_dygraph_dataparallel_with_pylayer.py 3.7 KB
Newer Older
J
james 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
18 19

import paddle
J
james 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
import paddle.distributed as dist
from paddle.autograd import PyLayer
from paddle.distributed.fleet.utils.hybrid_parallel_util import (
    fused_allreduce_gradients,
)

batch = 5
in_dim = 20
out_dim = 10


class cus_tanh(PyLayer):
    @staticmethod
    def forward(ctx, x):
        y = paddle.tanh(x)
        ctx.save_for_backward(y)
        return y

    @staticmethod
    def backward(ctx, dy):
        (y,) = ctx.saved_tensor()
        grad = dy * (1 - paddle.square(y))
        return grad


class SimpleNet(paddle.nn.Layer):
    def __init__(self, train_id, model_id):
47
        super().__init__()
J
james 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        self.w = self.create_parameter(shape=[in_dim, batch], dtype="float32")
        self.linear = paddle.nn.Linear(in_dim, out_dim)
        self.tanh = paddle.tanh

        self.trainer_id = train_id
        self.model_id = model_id

    def forward(self, inputs):
        if self.model_id == 0:
            inputs = cus_tanh.apply(inputs)
        else:
            inputs = self.tanh(inputs)

        inputs = paddle.matmul(self.w, inputs)
        return self.linear(inputs)


class TestDistTraning(unittest.TestCase):
    def test_multiple_xpus(self):
        self.trainer_id = dist.get_rank()
        dist.init_parallel_env()

        model_a = SimpleNet(self.trainer_id, 0)
        model_b = SimpleNet(self.trainer_id, 1)

        state_dict = model_a.state_dict()
        model_b.set_state_dict(state_dict)

        model_a = paddle.DataParallel(model_a)
        model_b = paddle.DataParallel(model_b)

        for step in range(10):
            x_data = np.random.randn(batch, in_dim).astype(np.float32)
            x = paddle.to_tensor(x_data)
            x.stop_gradient = False

            with model_a.no_sync():
                y_pred_a = model_a(x)
                loss_a = y_pred_a.mean()
                loss_a.backward()
            fused_allreduce_gradients(list(model_a.parameters()), None)

            y_pred_b = model_b(x)
            loss_b = y_pred_b.mean()
            loss_b.backward()

            self.check_gradient(model_a.parameters())
            self.check_gradient(model_b.parameters())

            self.check_acc(model_a._layers.w.grad, model_b._layers.w.grad)

            model_a.clear_gradients()
            model_b.clear_gradients()

    def check_acc(self, grad, acc_grad):
        grad = grad.numpy() if grad is not None else None
        acc_grad = acc_grad.numpy() if acc_grad is not None else None
        return np.testing.assert_allclose(grad, acc_grad, rtol=1e-6)

    def broadcast_param(self, param, root):
        paddle.distributed.broadcast(param, root)
        return param

    def check_gradient(self, params):
        other_param = []
        for param in params:
            if param.trainable and (param._grad_ivar() is not None):
                grad = param._grad_ivar()
                other_grad = self.broadcast_param(grad.clone(), root=1)
                if self.trainer_id == 0:
                    np.testing.assert_allclose(other_grad.numpy(), grad.numpy())


if __name__ == '__main__':
    unittest.main()