reshape_op.cc 27.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/framework/infershape_utils.h"
Y
yuyang18 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
20

21 22 23 24
// only can include the headers in paddle/phi/api dirs
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/scalar_array.h"
25 26
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
27 28
#include "paddle/phi/kernels/reshape_grad_kernel.h"
#include "paddle/phi/kernels/reshape_kernel.h"
29

W
wanghuancoder 已提交
30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

Y
Yibing Liu 已提交
40 41 42
namespace paddle {
namespace operators {

43 44
using Tensor = framework::Tensor;

Y
yuyang18 已提交
45 46 47 48 49 50 51 52
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
53
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
54 55
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
56
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
57 58
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
59

60 61
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
62
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
63 64
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
65 66 67 68 69
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
70 71 72 73 74 75 76
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
77 78 79 80 81
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
82 83 84
          infer_shape[i] = in_dims[i];
        }
      }
85
      auto infer_out_dims = phi::make_ddim(infer_shape);
86 87 88
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
89

90 91 92 93 94 95 96 97
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
98
      auto out_dims = phi::make_ddim(vec_dims);
99 100
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
101 102
      return;
    }
103 104

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
105 106 107 108 109
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
110

111 112 113 114
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
115 116 117 118 119 120 121 122 123 124 125 126
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
127 128
    const int64_t in_size = phi::product(in_dims);
    auto in_dims_vec = phi::vectorize(in_dims);
C
chengduo 已提交
129 130
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
131 132 133 134 135 136 137 138 139 140
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
141 142
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
143 144 145
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
146
                phi::make_ddim(shape), i));
Y
yuyang18 已提交
147 148
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
149 150
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
151 152 153 154 155
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
156
                phi::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
157
      } else {
158 159
        PADDLE_ENFORCE_GT(
            shape[i], 0,
160 161
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
162
                "be negative except one unknown dimension. "
163
                "But received  shape = [%s], shape[%d] = %d.",
164
                phi::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
165 166
      }

167 168
      // NOTE all non-zero values will be converted to True (include negative
      // value)
Y
yuyang18 已提交
169 170 171 172 173 174
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
175
      if (all_positive) {
Y
yuyang18 已提交
176 177 178 179 180
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
181 182 183 184 185 186 187
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
188
                "'shape' is [%s], known capacity of 'shape' is %d.",
189
                in_dims, in_size, phi::make_ddim(shape), capacity));
Y
yuyang18 已提交
190 191 192 193
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
194 195 196
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
197 198 199 200 201 202
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
203
                in_dims, in_size, phi::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
204
      }
Y
yuyang18 已提交
205
    }
206 207 208 209 210

    // support reshape with zero-input(input tensor with product(shape) == 0)
    // by now we require that if the input tensor is zero shape, the target
    // shape of output must be zero
    if (in_size == 0) {
J
JZ-LIANG 已提交
211
      PADDLE_ENFORCE_LE(
212 213 214 215 216 217
          capacity, in_size,
          platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X's shape = [%s], X's capacity = %d."
              "But the target shape of Out is [%s],  the "
              "capacity of 'Out' is %d.",
218
              in_dims, in_size, phi::make_ddim(shape), capacity));
219 220
    }

221
    return phi::make_ddim(output_shape);
Y
yuyang18 已提交
222 223 224 225 226
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
227 228 229 230
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
231
  }
232 233 234 235 236 237 238 239 240 241

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
242 243
};

Y
Yibing Liu 已提交
244 245
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
246
  void Make() override {
247 248
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
249 250 251
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
252
             "set correctly to guarantee shape inference in compile time.")
253
        .AsDispensable();
254 255
    AddInput(
        "ShapeTensor",
256 257 258 259
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
260 261
        .AsDuplicable()
        .AsDispensable();
262
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
263
    AddAttr<std::vector<int>>(
264 265 266 267
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
268
        .SetDefault({});
269 270
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
271 272
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
273 274
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
275

276 277
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
278

C
caoying03 已提交
279
Examples:
Y
Yibing Liu 已提交
280

C
caoying03 已提交
281 282 283 284
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

285
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
286 287 288 289 290 291
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

292
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
293 294 295 296
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
297

C
caoying03 已提交
298
Note:
Y
Yibing Liu 已提交
299

C
caoying03 已提交
300 301 302
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
303 304

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
305
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
306
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
307
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
308 309

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
310
Attr(shape) still should be set correctly to guarantee shape inference in
311
compile-time.
Y
Yibing Liu 已提交
312

Y
Yibing Liu 已提交
313 314 315 316 317 318 319 320 321 322 323 324
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

325
  void InferShape(framework::InferShapeContext *ctx) const override {
326 327 328
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
329
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
330 331
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
332
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
333
  }
334 335 336 337

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
338 339 340 341
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
342
  }
Y
Yibing Liu 已提交
343 344
};

Y
yuyang18 已提交
345 346 347 348 349
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
350

351 352
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
353 354 355
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
356
    phi::ScalarArray pt_scalar_shape;
357 358
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
359
      std::vector<phi::DenseTensor> pt_vec_shape;
360 361 362 363
      for (auto &tensor : list_new_shape_tensor) {
        if (platform::is_gpu_place(tensor->place()) ||
            platform::is_xpu_place(tensor->place())) {
          framework::Tensor temp;
364 365
          paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(),
                                            &temp);
366
          pt_vec_shape.push_back(std::move(temp));
367
        } else {
368
          pt_vec_shape.push_back(*tensor);
369 370
        }
      }
371
      pt_scalar_shape = phi::ScalarArray(pt_vec_shape);
372
    } else if (shape_tensor) {
373
      phi::DenseTensor pt_shape;
374 375 376
      if (platform::is_gpu_place(shape_tensor->place()) ||
          platform::is_xpu_place(shape_tensor->place())) {
        framework::Tensor temp;
377 378
        paddle::framework::TensorCopySync(*shape_tensor, platform::CPUPlace(),
                                          &temp);
379
        pt_shape = std::move(temp);
380
      } else {
381
        pt_shape = *shape_tensor;
382
      }
383
      pt_scalar_shape = phi::ScalarArray(pt_shape);
384
    } else {
385
      auto &shape_attr = ctx.Attr<std::vector<int>>("shape");
386
      pt_scalar_shape = phi::ScalarArray(shape_attr);
387 388 389
    }
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
390 391
      phi::ReshapeKernel(static_cast<const phi::CPUContext &>(dev_ctx), *in,
                         pt_scalar_shape, out);
392
    }
393
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
394 395
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
396 397
      phi::ReshapeKernel(static_cast<const phi::GPUContext &>(dev_ctx), *in,
                         pt_scalar_shape, out);
398
    }
399 400
#endif
#ifdef PADDLE_WITH_XPU
401 402
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
403 404
      phi::ReshapeKernel(static_cast<const phi::XPUContext &>(dev_ctx), *in,
                         pt_scalar_shape, out);
405
    }
406
#endif
Y
yuyang18 已提交
407
  }
Y
yuyang18 已提交
408 409 410 411 412 413 414
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
415
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
416 417 418

    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
419 420
      phi::ReshapeGradKernel(static_cast<const phi::CPUContext &>(dev_ctx),
                             *d_out, d_x);
421 422 423 424
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
425 426
      phi::ReshapeGradKernel(static_cast<const phi::GPUContext &>(dev_ctx),
                             *d_out, d_x);
427 428 429 430 431
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
432 433
      phi::ReshapeGradKernel(static_cast<const phi::XPUContext &>(dev_ctx),
                             *d_out, d_x);
434 435
    }
#endif
Y
yuyang18 已提交
436
  }
Y
yuyang18 已提交
437 438
};

439 440 441 442 443
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");
444
    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
445

446 447
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
448 449
      phi::ReshapeDoubleGradKernel(
          static_cast<const phi::CPUContext &>(dev_ctx), *dd_x, dd_out);
450 451 452 453
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
454 455
      phi::ReshapeDoubleGradKernel(
          static_cast<const phi::GPUContext &>(dev_ctx), *dd_x, dd_out);
456 457 458 459 460
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
461 462
      phi::ReshapeDoubleGradKernel(
          static_cast<const phi::XPUContext &>(dev_ctx), *dd_x, dd_out);
463 464
    }
#endif
465 466 467
  }
};

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
489 490 491 492
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
493
        .SetDefault(false);
494 495 496 497
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
498 499
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
500 501 502
  }
};

H
hong 已提交
503 504
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
505
 public:
H
hong 已提交
506
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
507

508
  void Apply(GradOpPtr<T> grad_op) const override {
509
    grad_op->SetType("reshape2_grad");
H
hong 已提交
510 511 512 513
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
514 515 516
  }
};

H
hong 已提交
517 518
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
519
 public:
H
hong 已提交
520
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
521

522
  void Apply(GradOpPtr<T> grad_op) const override {
523
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
524 525 526 527
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
528 529 530
  }
};

531 532 533 534 535 536 537 538 539
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
540 541 542
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
543
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
544 545
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
546
    auto xshape_dims = ctx->GetInputDim("XShape");
547
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
548 549 550 551 552 553 554
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
555 556 557 558
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
559
  }
560 561 562 563 564 565 566 567 568 569

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
570 571
};

572 573 574 575 576 577 578 579 580 581
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
582 583
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
584 585 586 587 588 589 590 591
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
592 593 594
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
595 596 597 598 599 600 601 602 603 604 605 606 607
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

608 609
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
610 611
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
612 613
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
614
                                    "DOut");
D
dzhwinter 已提交
615

Y
Yibing Liu 已提交
616 617 618
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
619
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
620

H
hong 已提交
621 622 623 624
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
625
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
626
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
627
                  ops::ReshapeGradInplaceInferer);
628

629
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
630 631 632
                               ops::ReshapeKernel, int16_t, ops::ReshapeKernel,
                               int, ops::ReshapeKernel, int64_t,
                               ops::ReshapeKernel);
633
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
634 635
                               double, ops::ReshapeGradKernel, int16_t,
                               ops::ReshapeGradKernel, int,
636 637
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
638 639 640 641

DELCARE_INFER_SHAPE_FUNCTOR(reshape2, ReshapeInferShapeFunctor,
                            PT_INFER_META(phi::ReshapeWithXShapeInferMeta));

642
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
643 644
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
645
                  ReshapeInferShapeFunctor, ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
646
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
647 648
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
649
                  ops::ReshapeGradInplaceInferer);
650
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
651 652
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
653

654
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
655
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
656 657 658 659 660
                                ops::ReshapeKernel, int16_t, ops::ReshapeKernel,
                                int, ops::ReshapeKernel, uint8_t,
                                ops::ReshapeKernel, int64_t, ops::ReshapeKernel,
                                plat::float16, ops::ReshapeKernel,
                                plat::bfloat16, ops::ReshapeKernel);
661
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
662 663 664
                                double, ops::ReshapeGradKernel, int16_t,
                                ops::ReshapeKernel, int, ops::ReshapeGradKernel,
                                int64_t, ops::ReshapeGradKernel, uint8_t,
665
                                ops::ReshapeGradKernel, plat::float16,
666
                                ops::ReshapeGradKernel, plat::bfloat16,
667
                                ops::ReshapeGradKernel);
668
#endif