test_op_nn.py 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import logging
18
import math
19 20
import unittest

21
import cinn
22 23 24 25
import conv2d_utils
import numpy as np
import pool_utils
from cinn import common, framework, frontend, ir, lang, runtime
26 27
from cinn.poly import create_stages
from test_utils import SingleOpTester
28

29
import paddle
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


class OpTest_relu(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        return np.maximum(X, np.zeros(X.shape).astype("float32"))

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[32]], [[32]], "relu", attrs)


class OpTest_relu6(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        return np.minimum(
46 47
            np.maximum(X, np.zeros(np.array(X).shape).astype("float32")), 6
        )
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[32, 32]], [[32, 32]], "relu6", attrs)


class OpTest_conv2d_nchw(SingleOpTester):
    def init_testcase(self):
        self.input_size = [1, 3, 10, 10]
        self.groups = 1
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [2, f_c, 2, 2]
        assert np.mod(self.filter_size[0], self.groups) == 0
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [2, 2]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
74 75 76
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
77 78 79

    def test_op(self):
        self.init_testcase()
80 81 82 83 84 85 86 87
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108


class OpTest_conv2d_nchw_1(SingleOpTester):
    def init_testcase(self):
        self.input_size = [1, 3, 224, 224]
        self.groups = 1
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [64, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [3, 3]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
109 110 111
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
112 113 114

    def test_op(self):
        self.init_testcase()
115 116 117 118 119 120 121 122
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143


class OpTest_conv2d_nchw_group(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = 4
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
144 145 146
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
147 148 149

    def test_op(self):
        self.init_testcase()
150 151 152 153 154 155 156 157
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178


class OpTest_conv2d_nchw_depthwise(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
179 180 181
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
182 183 184

    def test_op(self):
        self.init_testcase()
185 186 187 188 189 190 191 192
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213


class OpTest_conv2d_nhwc_group(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = 4
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [2, 2]
        self.stride = [2, 2]
        self.dilation = [2, 2]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
214 215 216
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
217 218 219

    def test_op(self):
        self.init_testcase()
220 221 222 223 224 225 226 227
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248


class OpTest_conv2d_nhwc_depthwise(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
249 250 251
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
252 253 254

    def test_op(self):
        self.init_testcase()
255 256 257 258 259 260 261 262
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284


# test channel multiplier format
class OpTest_depthwise_conv2d_nchw(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = self.input_size[1]
        assert np.mod(self.input_size[1], self.groups) == 0
        channel_multiplier = 1
        self.filter_size = [self.input_size[1], channel_multiplier, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
285 286 287
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, True
        )
288 289 290

    def test_op(self):
        self.init_testcase()
291 292 293 294 295 296 297 298
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "depthwise_conv2d",
            self.attrs,
            0,
            True,
        )
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320


# test channel multiplier format
class OpTest_depthwise_conv2d_nhwc(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = self.input_size[3]
        assert np.mod(self.input_size[3], self.groups) == 0
        channel_multiplier = 4
        self.filter_size = [self.input_size[3], channel_multiplier, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
321 322 323
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, True
        )
324 325 326

    def test_op(self):
        self.init_testcase()
327 328 329 330 331 332 333 334
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "depthwise_conv2d",
            self.attrs,
            0,
            True,
        )
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508


class OpTest_pool1d(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [2])
    attrs.set_attr("padding_size", [1, 1])
    attrs.set_attr("pool_type", "max")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool1d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [2])
    attrs.set_attr("padding_size", [2, 3])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool1d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [3])
    attrs.set_attr("padding_size", [4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 3]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool2d(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [2, 2])
    attrs.set_attr("padding_size", [1, 1, 1, 1])
    attrs.set_attr("pool_type", "max")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


class OpTest_pool2d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [2, 2])
    attrs.set_attr("padding_size", [2, 3, 4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


class OpTest_pool2d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [3, 3])
    attrs.set_attr("padding_size", [2, 3, 4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NHWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 8, 3]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


# The following test is temporarily broken

# class OpTest_pool3d(SingleOpTester):
#     attrs = framework.NodeAttr()
#     attrs.attr_store = {
#         "kernel_size": [2, 2, 2],
#         "stride_size": [2, 2, 2],
#         "padding_size": [1, 2, 3, 4, 5, 6],
#         "pool_type": "max",
#         "ceil_mode": False,
#         "exclusive": True,
#         "data_format": "NCDHW"
#     }

#     def create_target_data(self, inputs_data, attrs):
#         return pool_utils.pool3d(inputs_data[0], self.attrs)

#     def test_op(self):
#         input_shape = [2, 3, 8, 8, 8]
#         self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_pool3d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2, 2])
    attrs.set_attr("stride_size", [2, 2, 2])
    attrs.set_attr("padding_size", [1, 1, 1, 1, 1, 1])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCDHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool3d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8, 8]
        self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_pool3d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2, 2])
    attrs.set_attr("stride_size", [2, 2, 2])
    attrs.set_attr("padding_size", [1, 2, 3, 4, 5, 6])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NDHWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool3d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 8, 8, 3]
        self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_batchnorm(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X, Scale, Bias, Mean, Variance] = inputs_data
        c = X.shape[1]
        for i in range(0, c):
            X[:, i, :, :] = (X[:, i, :, :] - Mean[i]) / math.sqrt(
509 510
                Variance[i] + 0.00001
            ) * Scale[i] + Bias[i]
511 512 513 514
        return X

    def test_op(self):
        attrs = framework.NodeAttr()
515 516 517 518 519 520
        self.to_test_op(
            [[1, 64, 112, 112], [64], [64], [64], [64]],
            [[1, 64, 112, 112]],
            "batch_norm",
            attrs,
        )
521 522 523 524 525 526 527


class OpTest_softmax_0(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[1]):
528 529 530 531
            Y[:, i, :] = (
                np.exp(X[:, i, :])
                / np.sum(np.exp(X), axis=1, keepdims=True)[:, 0, :]
            )
532 533 534 535 536
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", 1)
537 538 539 540 541 542 543
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
544 545 546 547 548 549 550


class OpTest_softmax_1(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[2]):
551 552 553 554
            Y[:, :, i] = (
                np.exp(X[:, :, i])
                / np.sum(np.exp(X), axis=2, keepdims=True)[:, :, 0]
            )
555 556 557 558 559
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", -1)
560 561 562 563 564 565 566
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
567 568 569 570 571 572 573


class OpTest_softmax_2(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[0]):
574 575 576 577
            Y[i, :, :] = (
                np.exp(X[i, :, :])
                / np.sum(np.exp(X), axis=0, keepdims=True)[0, :, :]
            )
578 579 580 581 582
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", 0)
583 584 585 586 587 588 589
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639


class OpTest_sigmoid(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        x = np.array(inputs_data[0])
        y = 1 / (1 + np.exp(-x))
        return y

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[3, 224, 224]], [[3, 224, 224]], "sigmoid", attrs)


class OpTest_slice_0(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = X[:, 0:2, 2:4, :]
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axes", [0, 1, 2])
        attrs.set_attr("starts", [-3, 0, 2])
        attrs.set_attr("ends", [3, 2, 4])
        self.to_test_op([[3, 4, 5, 6]], [[3, 2, 2, 6]], "slice", attrs)


class OpTest_slice_1(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = X[:, 0:3, 1:2, 2:4]
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axes", [1, 2, 3])
        attrs.set_attr("starts", [0, 1, 2])
        attrs.set_attr("ends", [3, 2, 4])
        self.to_test_op([[3, 4, 5, 6]], [[3, 3, 1, 2]], "slice", attrs)


class OpTest_dropout_infer_0(SingleOpTester):
    def init_testcase(self):
        self.attrs = framework.NodeAttr()
        self.attrs.set_attr("dropout_prob", 0.2)
        self.attrs.set_attr("dropout_implementation", "downgrade_in_infer")

    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        assert "dropout_implementation" in self.attrs.attr_store
640 641 642 643
        if (
            self.attrs.attr_store["dropout_implementation"]
            == "downgrade_in_infer"
        ):
644 645 646 647 648 649
            return X * (1 - self.attrs.attr_store["dropout_prob"])
        else:
            return X

    def test_op(self):
        self.init_testcase()
650 651 652
        self.to_test_op(
            [[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs
        )
653 654 655 656 657 658 659 660 661 662 663


class OpTest_dropout_infer_1(SingleOpTester):
    def init_testcase(self):
        self.attrs = framework.NodeAttr()
        self.attrs.set_attr("dropout_prob", 0.2)
        self.attrs.set_attr("dropout_implementation", "upscale_in_train")

    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        assert "dropout_implementation" in self.attrs.attr_store
664 665 666 667
        if (
            self.attrs.attr_store["dropout_implementation"]
            == "downgrade_in_infer"
        ):
668 669 670 671 672 673
            return X * (1 - self.attrs.attr_store["dropout_prob"])
        else:
            return X

    def test_op(self):
        self.init_testcase()
674 675 676
        self.to_test_op(
            [[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs
        )
677 678 679 680


if __name__ == "__main__":
    unittest.main()