test_op_benchmark.py 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import sys
18
import unittest
19

20 21
import cinn
import numpy as np
22 23 24 25 26 27
from cinn import Target, ir, lang, runtime
from cinn.common import *
from cinn.framework import *
from cinn.frontend import *

import paddle
28
from paddle import static
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

assert len(sys.argv) == 2
enable_gpu = sys.argv.pop()


class TestBenchmark(unittest.TestCase):
    def setUp(self):
        if enable_gpu == "ON":
            self.target = DefaultNVGPUTarget()
        else:
            self.target = DefaultHostTarget()

    def paddle_verify(self, result):
        paddle.enable_static()

        a = static.data(name='A', shape=[1, 128, 28, 28], dtype='float32')
        e = paddle.nn.initializer.NumpyArrayInitializer(
46 47
            np.array(result[1]).reshape((256, 128, 1, 1)).astype("float32")
        )
48 49 50 51 52 53 54
        res = static.nn.conv2d(
            input=a,
            num_filters=256,
            filter_size=1,
            stride=2,
            padding=0,
            dilation=1,
55 56
            param_attr=e,
        )
57 58 59 60 61 62 63 64 65 66

        exe = static.Executor(paddle.CPUPlace())
        exe.run(static.default_startup_program())

        x = np.array(result[0]).reshape((1, 128, 28, 28)).astype("float32")
        output = exe.run(feed={"A": x}, fetch_list=[res])
        output = np.array(output).reshape(-1)
        print("result in conv2d paddle_verify: \n")
        for i in range(0, output.shape[0]):
            if np.abs(output[i] - result[len(result) - 1][i]) > 1e-4:
67 68 69 70 71 72 73 74 75 76
                print(
                    "Error! ",
                    i,
                    "-th data has diff with target data:\n",
                    output[i],
                    " vs: ",
                    result[len(result) - 1][i],
                    ". Diff is: ",
                    output[i] - result[len(result) - 1][i],
                )
77
        np.testing.assert_allclose(result[len(result) - 1], output, atol=1e-4)
78 79 80 81 82

    def atest_conv2d_cinn(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([1, 128, 28, 28])
        b = Variable("E").set_type(Float(32)).set_shape([256, 128, 1, 1])
83 84 85
        c = prog.conv2d(
            a, b, {"stride": [2, 2], "dilation": [1, 1], "padding": [0, 0]}
        )
86 87
        tensor_data = [
            np.random.random([1, 128, 28, 28]).astype("float32"),
88
            np.random.random([256, 128, 1, 1]).astype("float32"),
89 90
        ]
        result = prog.test_benchmark(
91 92 93 94 95 96 97
            self.target,
            [a, b],
            tensor_data,
            c,
            20000,
            "TESTING [conv2d] time cost with shape [1, 128, 28, 28]...",
        )
98 99 100 101 102 103 104 105
        result = result.numpy(self.target).reshape(-1)
        tensor_data.append(result)
        self.paddle_verify(tensor_data)

    def atest_conv2d_cinn_code(self):
        prog = Program()
        a = Variable("X").set_type(Float(32)).set_shape([1, 128, 28, 28])
        b = Variable("Y").set_type(Float(32)).set_shape([256, 128, 1, 1])
106 107 108
        c = prog.conv2d(
            a, b, {"stride": [2, 2], "dilation": [1, 1], "padding": [0, 0]}
        )
109 110
        tensor_data = [
            np.random.random([1, 128, 28, 28]).astype("float32"),
111
            np.random.random([256, 128, 1, 1]).astype("float32"),
112 113
        ]
        result = prog.test_benchmark_with_code(
114 115 116 117 118
            self.target,
            [a, b],
            tensor_data,
            c,
            20000,
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            "TESTING [conv2d of tvm schedule] time cost with shape [1, 128, 28, 28]...",
            """
extern "C" {

#include "cinn_cuda_runtime_source.cuh"

#ifdef __CUDACC_RTC__
typedef int int32_t;
typedef char int8_t;
#endif



__global__
void fn_conv2d_0_kernel(const float* __restrict__ X, const float* __restrict__ Y, float* __restrict__ COD)
{
  __shared__ float _input_pad_0_read_cache [ 224 ];
  float _COD_write_cache [ 2 ];
  __shared__ float _Y_read_cache [ 256 ];
  float* COD_write_cache = _COD_write_cache;
  float* COD_write_cache__reduce_init = _COD_write_cache;
  float* Y_read_cache = _Y_read_cache;
  float* input_pad_0_read_cache = _input_pad_0_read_cache;
  if ((blockIdx.z < 8)) {
    if ((blockIdx.y < 14)) {
      if ((threadIdx.z < 16)) {
        if ((threadIdx.x < 14)) {
        {
          for (int32_t rc_outer = 0; rc_outer < 2; rc_outer += 1) {
            COD_write_cache__reduce_init[rc_outer] = 0;
          };
          for (int32_t rc_outer = 0; rc_outer < 16; rc_outer += 1) {
            {
              __syncthreads();
              if ((threadIdx.z < 8)) {
                input_pad_0_read_cache[((2 * threadIdx.x) + (28 * threadIdx.z))] = X[((56 * blockIdx.y) + ((6272 * rc_outer) + ((2 * threadIdx.x) + (784 * threadIdx.z))))];
              };
            };
            for (int32_t rc_inner = 0; rc_inner < 2; rc_inner += 1) {
              if ((threadIdx.x < 8)) {
                Y_read_cache[((threadIdx.x / 2) + ((8 * (threadIdx.x % 2)) + ((4 * rc_inner) + (16 * threadIdx.z))))] = Y[((threadIdx.x / 2) + ((128 * (threadIdx.x % 2)) + ((4096 * blockIdx.z) + ((4 * rc_inner) + ((8 * rc_outer) + (256 * threadIdx.z))))))];
              };
            };
            __syncthreads();
            for (int32_t rc_inner = 0; rc_inner < 8; rc_inner += 1) {
              for (int32_t j_inner = 0; j_inner < 2; j_inner += 1) {
                COD_write_cache[j_inner] = (COD_write_cache[j_inner] + (input_pad_0_read_cache[((28 * rc_inner) + (2 * threadIdx.x))] * Y_read_cache[((8 * j_inner) + ((16 * threadIdx.z) + rc_inner))]));
              };
            };
          };
          for (int32_t rc_outer = 0; rc_outer < 2; rc_outer += 1) {
            COD[((14 * blockIdx.y) + ((6272 * blockIdx.z) + ((196 * rc_outer) + ((392 * threadIdx.z) + threadIdx.x))))] = COD_write_cache[rc_outer];
          };
        }
        };
      };
    };
  };
}

}
180 181
            """,
        )
182 183 184 185 186 187
        result = result.numpy(self.target).reshape(-1)
        tensor_data.append(result)
        self.paddle_verify(tensor_data)

    def atest_conv2d_tvm_code(self):
        prog = Program()
188 189 190 191 192 193 194 195 196 197 198 199 200
        a = (
            Variable("placeholder")
            .set_type(Float(32))
            .set_shape([1, 128, 28, 28])
        )
        b = (
            Variable("placeholder1")
            .set_type(Float(32))
            .set_shape([256, 128, 1, 1])
        )
        c = prog.conv2d(
            a, b, {"stride": [2, 2], "dilation": [1, 1], "padding": [0, 0]}
        )
201 202
        tensor_data = [
            np.random.random([1, 128, 28, 28]).astype("float32"),
203
            np.random.random([256, 128, 1, 1]).astype("float32"),
204 205
        ]
        result = prog.test_benchmark_with_code(
206 207 208 209 210
            self.target,
            [a, b],
            tensor_data,
            c,
            20000,
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            "TESTING [conv2d of tvm schedule] time cost with shape [1, 128, 28, 28]...",
            """
extern "C" {

#include "cinn_cuda_runtime_source.cuh"

#ifdef __CUDACC_RTC__
typedef int int32_t;
typedef char int8_t;
#endif



__global__ void fn_conv2d_0_kernel(float* __restrict__ placeholder, float* __restrict__ placeholder1, float* __restrict__ Conv2d_nchw_out) {
  float compute_local[2];
  __shared__ float pad_temp_shared[216];
  __shared__ float placeholder_shared[256];
  for (int ff_c_init = 0; ff_c_init < 2; ++ff_c_init) {
    compute_local[(ff_c_init)] = 0.000000e+00f;
  }
  for (int rc_outer = 0; rc_outer < 16; ++rc_outer) {
    __syncthreads();
    if (((((int)threadIdx.z) * 14) + ((int)threadIdx.x)) < 216) {
      pad_temp_shared[(((((int)threadIdx.z) * 14) + ((int)threadIdx.x)))] = placeholder[(((((rc_outer * 6272) + ((((((int)threadIdx.z) * 14) + ((int)threadIdx.x)) / 27) * 784)) + (((int)blockIdx.y) * 56)) + (((((int)threadIdx.z) * 14) + ((int)threadIdx.x)) % 27)))];
    }
    for (int ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner = 0; ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner < 2; ++ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner) {
      if (((((int)threadIdx.z) * 2) + (((((int)threadIdx.x) * 2) + ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner) >> 3)) < 32) {
        if ((((((int)threadIdx.z) * 16) + (((int)threadIdx.x) * 2)) + ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner) < 256) {
          if (((((int)threadIdx.x) * 2) + ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner) < 16) {
            placeholder_shared[((((((int)threadIdx.z) * 16) + (((int)threadIdx.x) * 2)) + ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner))] = placeholder1[((((((((int)blockIdx.z) * 4096) + (((int)threadIdx.z) * 256)) + ((((((int)threadIdx.x) * 2) + ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner) >> 3) * 128)) + (rc_outer * 8)) + (((((int)threadIdx.x) * 2) + ax0_ax1_fused_ax2_fused_ax3_fused_inner_inner_inner) & 7)))];
          }
        }
      }
    }
    __syncthreads();
    for (int rc_inner = 0; rc_inner < 8; ++rc_inner) {
      for (int ff_c = 0; ff_c < 2; ++ff_c) {
        compute_local[(ff_c)] = (compute_local[(ff_c)] + (pad_temp_shared[(((rc_inner * 27) + (((int)threadIdx.x) * 2)))] * placeholder_shared[((((((int)threadIdx.z) * 16) + (ff_c * 8)) + rc_inner))]));
      }
    }
  }
  for (int ff_inner_inner_inner = 0; ff_inner_inner_inner < 2; ++ff_inner_inner_inner) {
    Conv2d_nchw_out[((((((((int)blockIdx.z) * 6272) + (((int)threadIdx.z) * 392)) + (ff_inner_inner_inner * 196)) + (((int)blockIdx.y) * 14)) + ((int)threadIdx.x)))] = compute_local[(ff_inner_inner_inner)];
  }
}

}
258 259
            """,
        )
260 261 262 263 264 265 266 267 268 269
        result = result.numpy(self.target).reshape(-1)
        tensor_data.append(result)
        self.paddle_verify(tensor_data)

    def atest_softmax(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([1024, 2048])
        c = prog.softmax(a, {})
        tensor_data = [np.random.random([1024, 2048]).astype("float32")]
        result = prog.test_benchmark(
270 271 272 273 274 275 276
            self.target,
            [a],
            tensor_data,
            c,
            200,
            "TESTING [softmax] time cost with shape [1024,2048]...",
        )
277 278 279 280 281 282 283 284

    def atest_matmul(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([512, 512])
        b = Variable("B").set_type(Float(32)).set_shape([512, 512])
        c = prog.mul(a, b, 1, 1)
        tensor_data = [
            np.random.random([512, 512]).astype("float32"),
285
            np.random.random([512, 512]).astype("float32"),
286 287
        ]
        result = prog.test_benchmark(
288 289 290 291 292 293 294
            self.target,
            [a, b],
            tensor_data,
            c,
            200,
            "TESTING [matmul] time cost with shape [512,512]...",
        )
295 296 297 298 299 300 301 302 303 304 305

    def atest_matmul2(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([128, 512])
        b = Variable("B").set_type(Float(32)).set_shape([256, 512])
        c = Variable("C").set_type(Float(32)).set_shape([128, 256])
        d = prog.mul(a, b, 1, 1)
        e = prog.add(d, c)
        tensor_data = [
            np.random.random([128, 512]).astype("float32"),
            np.random.random([256, 512]).astype("float32"),
306
            np.random.random([128, 256]).astype("float32"),
307 308
        ]
        result = prog.test_benchmark(
309 310 311 312 313 314
            self.target,
            [a, b, c],
            tensor_data,
            e,
            200,
            "TESTING [mul and add] time cost with shape [128,512]*[256,512]...",
315 316 317 318 319 320 321 322 323 324 325
        )

    def atest_matmul(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([512, 512])
        b = Variable("B").set_type(Float(32)).set_shape([512, 512])
        c = Variable("C").set_type(Float(32)).set_shape([512, 512])
        d = prog.mul(a, b, 1, 1)
        # e = prog.add(d, c)
        tensor_data = [
            np.random.random([512, 512]).astype("float32"),
326
            np.random.random([512, 512]).astype("float32"),
327 328
        ]
        result = prog.test_benchmark_with_code(
329 330 331 332 333 334 335
            self.target,
            [a, b],
            tensor_data,
            d,
            200,
            "TESTING [matmul] time cost with shape [512,512]...",
            '''
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
            extern "C" {
#include "cinn_cuda_runtime_source.cuh"
#ifdef __CUDACC_RTC__
typedef int int32_t;
typedef char int8_t;
#endif

 __global__
 void fn_mul_0_kernel(const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ Mul_output)
 {
   const float* A_reshape = A;
   const float* B_reshape = B;
   float* Mul_output__reduce_init = Mul_output;
   if ((blockIdx.x < 512)) {
   {
     if ((threadIdx.x < 256)) {
     {
       for (int32_t j_inner = 0; j_inner < 2; j_inner += 1) {
         Mul_output__reduce_init[((512 * blockIdx.x) + ((2 * threadIdx.x) + j_inner))] = 0;
       };
     }
     };
   }
   };
   if ((blockIdx.x < 512)) {
   {
     if ((threadIdx.x < 256)) {
     {
       for (int32_t j_inner = 0; j_inner < 2; j_inner += 1) {
        for (int32_t axis_k = 0; axis_k < 512; axis_k += 1) {
          Mul_output[((512 * blockIdx.x) + ((2 * threadIdx.x) + j_inner))] = (Mul_output[((512 * blockIdx.x) + ((2 * threadIdx.x) + j_inner))] + (A_reshape[((512 * blockIdx.x) + axis_k)] * B_reshape[((512 * axis_k) + ((2 * threadIdx.x) + j_inner))])) + Mul_output[((512 * blockIdx.x) + ((2 * threadIdx.x) + j_inner))];
         };
       };
     }
     };
  }
  };
 }
374 375
 }''',
        )
376 377 378 379 380

    def atest_pool2d(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([2, 64, 112, 112])
        c = prog.pool2d(
381 382
            a,
            {
383 384 385
                "kernel_size": (3, 3),
                "stride_size": (2, 2),
                "padding_size": (1, 1, 1, 1),
386 387 388
                "pool_type": "max",
            },
        )
389 390
        tensor_data = [np.random.random([2, 64, 112, 112]).astype("float32")]
        result = prog.test_benchmark(
391 392 393 394 395 396 397
            self.target,
            [a],
            tensor_data,
            c,
            2000,
            "TESTING [pool2d] time cost with shape [2, 64, 112, 112]...",
        )
398 399 400 401 402 403 404 405

    def atest_elementwise1(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([64, 64])
        b = Variable("B").set_type(Float(32)).set_shape([64, 64])
        c = prog.add(a, b)
        tensor_data = [
            np.random.random([64, 64]).astype("float32"),
406
            np.random.random([64, 64]).astype("float32"),
407 408
        ]
        result = prog.test_benchmark(
409 410 411 412 413 414 415
            self.target,
            [a, b],
            tensor_data,
            c,
            200,
            "TESTING [elementwise_add] time cost with shape [64, 64]...",
        )
416
        result = result.numpy(self.target).reshape(-1)
417 418
        np.testing.assert_allclose(
            (tensor_data[0] + tensor_data[1]).reshape(-1), result, atol=1e-4
419
        )
420 421 422 423 424 425 426 427

    def atest_elementwise2(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([2, 512, 112, 112])
        b = Variable("B").set_type(Float(32)).set_shape([2, 512, 112, 112])
        c = prog.add(a, b)
        tensor_data = [
            np.random.random([2, 512, 112, 112]).astype("float32"),
428
            np.random.random([2, 512, 112, 112]).astype("float32"),
429 430
        ]
        result = prog.test_benchmark(
431 432 433 434 435 436
            self.target,
            [a, b],
            tensor_data,
            c,
            200,
            "TESTING [elementwise_add] time cost with shape [2, 512, 112, 112]...",
437 438
        )
        result = result.numpy(self.target).reshape(-1)
439 440
        np.testing.assert_allclose(
            (tensor_data[0] + tensor_data[1]).reshape(-1), result, atol=1e-4
441
        )
442 443 444 445 446 447 448 449

    def atest_elementwise2(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([4, 1024])
        b = Variable("B").set_type(Float(32)).set_shape([4, 1024])
        c = prog.add(a, b)
        tensor_data = [
            np.random.random([4, 1024]).astype("float32"),
450
            np.random.random([4, 1024]).astype("float32"),
451 452
        ]
        result = prog.test_benchmark_with_code(
453 454 455 456 457
            self.target,
            [a, b],
            tensor_data,
            c,
            200,
458 459 460 461 462 463 464 465 466 467
            "TESTING [elementwise_add] time cost with input code...",
            '''extern "C" {

__global__
void fn_elementwise_add_0_kernel(const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ EleAdd_Out_0)
{

      EleAdd_Out_0[1024 * blockIdx.x + threadIdx.x] = (A[1024 * blockIdx.x + threadIdx.x] + B[1024 * blockIdx.x + threadIdx.x]);
}

468 469
}''',
        )
470 471 472 473 474 475 476 477 478 479 480 481 482 483

    def atest_batchnorm(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([2, 512, 32, 32])
        b = Variable("B").set_type(Float(32)).set_shape([512])
        c = Variable("C").set_type(Float(32)).set_shape([512])
        d = Variable("D").set_type(Float(32)).set_shape([512])
        e = Variable("E").set_type(Float(32)).set_shape([512])
        f = prog.batchnorm(a, b, c, d, e, {})
        tensor_data = [
            np.random.random([2, 512, 32, 32]).astype("float32"),
            np.random.random([512]).astype("float32"),
            np.random.random([512]).astype("float32"),
            np.random.random([512]).astype("float32"),
484
            np.random.random([512]).astype("float32"),
485 486
        ]
        result = prog.test_benchmark(
487 488 489 490 491 492 493
            self.target,
            [a, b, c, d, e],
            tensor_data,
            f,
            1000,
            "TESTING [batchnorm] time cost with shape [2, 512, 32, 32]...",
        )
494 495 496 497 498 499 500 501 502 503 504 505 506 507

    def atest_batchnorm2(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([2, 64, 8, 8])
        b = Variable("B").set_type(Float(32)).set_shape([64])
        c = Variable("C").set_type(Float(32)).set_shape([64])
        d = Variable("D").set_type(Float(32)).set_shape([64])
        e = Variable("E").set_type(Float(32)).set_shape([64])
        f = prog.batchnorm(a, b, c, d, e, {})
        tensor_data = [
            np.random.random([2, 64, 8, 8]).astype("float32"),
            np.random.random([64]).astype("float32"),
            np.random.random([64]).astype("float32"),
            np.random.random([64]).astype("float32"),
508
            np.random.random([64]).astype("float32"),
509 510
        ]
        result = prog.test_benchmark(
511 512 513 514 515 516 517
            self.target,
            [a, b, c, d, e],
            tensor_data,
            f,
            200,
            "TESTING [batchnorm] time cost with shape [2, 64, 8, 8]...",
        )
518 519 520 521 522 523 524

    def atest_relu3(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([2, 512, 112, 112])
        c = prog.relu(a)
        tensor_data = [np.random.random([2, 512, 112, 112]).astype("float32")]
        result = prog.test_benchmark(
525 526 527 528 529 530 531
            self.target,
            [a],
            tensor_data,
            c,
            200,
            "TESTING [relu] time cost with shape [2,512,112,112]...",
        )
532 533 534 535 536 537 538

    def atest_relu(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([64, 64])
        c = prog.sigmoid(a)
        tensor_data = [np.random.random([64, 64]).astype("float32")]
        result = prog.test_benchmark(
539 540 541 542 543 544 545
            self.target,
            [a],
            tensor_data,
            c,
            200,
            "TESTING [sigmoid] time cost with shape [64,64]...",
        )
546 547 548 549 550 551 552

    def atest_relu2(self):
        prog = Program()
        a = Variable("A").set_type(Float(32)).set_shape([2, 512, 112, 112])
        c = prog.sigmoid(a)
        tensor_data = [np.random.random([2, 512, 112, 112]).astype("float32")]
        result = prog.test_benchmark(
553 554 555 556 557 558 559
            self.target,
            [a],
            tensor_data,
            c,
            200,
            "TESTING [sigmoid] time cost with shape [2,512,112,112]...",
        )
560 561 562 563


if __name__ == "__main__":
    unittest.main()