op_gen.py 63.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml
19
from op_verify_gen import gen_verify_func_str
20 21 22 23 24 25 26 27 28 29 30 31

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
32
// This file is generated by "paddle/fluid/ir/dialect/op_gen.py"
33

34 35
#include <vector>

36 37
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
38
#include "paddle/ir/core/op_base.h"
39
#include "paddle/fluid/ir/dialect/utils.h"
40
#include "paddle/fluid/ir/dialect/op_yaml_info_util.h"
41
#include "paddle/fluid/ir/interface/op_yaml_info.h"
42
#include "paddle/fluid/ir/interface/infershape.h"
H
hong 已提交
43 44 45
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"

46
{input}
47 48

{declare_type_id}
49 50 51 52 53 54
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

55 56 57 58
DECLARE_OP_TYPE_ID = """
IR_DECLARE_EXPLICIT_TYPE_ID({op_name})
"""

59 60 61 62 63 64 65
OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
66
  static OpInfoTuple GetOpInfo();
67
  static void Build({build_args});
68
  {build_mutable_attr_is_input}
69
  void Verify();
70
{get_inputs_and_outputs}
H
hong 已提交
71
{exclusive_interface}
72 73 74 75 76 77 78 79 80
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

81
OP_GET_INPUT_TEMPLATE = """  ir::OpOperand {input_name}() {{ return operation()->operand({input_index}); }}
82
"""
83
OP_GET_OUTPUT_TEMPLATE = """  ir::OpResult {output_name}() {{ return operation()->result({output_index}); }}
84 85 86 87 88
"""

# =====================================
# String Template for cc file code gen
# =====================================
89 90 91
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_gen.py"

#include "{h_file}"
92 93
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
94 95
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
96
#include "paddle/ir/core/builtin_op.h"
97
#include "paddle/ir/core/ir_context.h"
98
#include "paddle/phi/core/enforce.h"
99 100 101 102 103 104 105
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
106
#include "paddle/phi/api/lib/utils/allocator.h"
107

108
{input}
109 110

{define_type_id}
111 112 113 114 115 116
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

117
# get op info
118 119
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
120 121 122
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
123 124
  paddle::dialect::OpRunTimeInfo run_time_info = OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}, {{"{kernel_key_dtype}"}}, {{{inplace}}}, {{{view}}});

125
  return std::make_tuple(inputs, attributes, outputs, run_time_info);
126 127
}}
"""
128
CONSTRUCT_INPUT_INFO_TEMPLATE = """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
129 130 131 132 133 134 135
CONSTRUCT_OUTPUT_INFO_TEMPLATE = (
    """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
)
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = (
    """OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
)

136 137
# build
OP_BUILD_TEMPLATE = """
138
void {op_name}::Build({build_args}) {{
139
{build_mutable_attributes}
140 141 142 143 144
{build_inputs}
{build_attributes}
{build_outputs}
}}
"""
H
hong 已提交
145 146 147 148 149 150
OP_INFER_SHAPE_TEMPLATE = """
void {op_name}::InferShape( phi::InferMetaContext *infer_meta ) {{
  auto fn = PD_INFER_META(phi::{infer_meta_func});
  fn(infer_meta);
}}
"""
151

152 153 154 155
DEFINE_OP_TYPE_ID = """
IR_DEFINE_EXPLICIT_TYPE_ID({op_name})
"""

156

157 158 159 160 161 162 163 164 165 166 167 168
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


169
scalar_type_maps = {
Z
zhangbo9674 已提交
170 171
    'int': 'ir::Int32Attribute',
    'int64_t': 'ir::Int64Attribute',
172 173 174 175 176 177
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}


178
# =====================================
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
            phi_name, fluid_name = to_phi_and_fluid_op_name(compat['op'])
            if op_name == phi_name:
                return compat
        return None


# =====================================
# Parse Op Information From Yaml
197 198
# =====================================
class OpInfoParser:
199
    def __init__(self, op_yaml_item, op_compat_item):
200
        self.op_yaml_item = op_yaml_item
201
        self.op_compat_item = op_compat_item
202
        self.op_phi_name = self.parse_op_phi_name()
203
        # parse inputs
204 205 206
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
207
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
208 209 210
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
211

212
        # parse outputs
213 214
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
215
        self.output_size_list = self.parse_output_size_list()
216
        self.output_optional_list = self.parse_output_optional_list()
217
        self.output_intermediate_list = self.parse_output_intermediate_list()
218 219 220 221 222
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
223

224
        # parse attributes
225 226 227
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
Z
zhangbo9674 已提交
228 229
            'Scalar(int)': ['ir::Int32Attribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64Attribute', 'int64_t'],
230 231
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
232 233
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
234
                'const std::vector<Scalar>&',
235
            ],
Z
zhangbo9674 已提交
236 237 238
            'int': ['ir::Int32Attribute', 'int'],
            'int32_t': ['ir::Int32Attribute', 'int32_t'],
            'int64_t': ['ir::Int64Attribute', 'int64_t'],
239 240 241 242 243
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
244
                'const std::vector<float>&',
245 246 247 248 249
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
250
                'const std::vecot<bool>&',
251 252 253 254
            ],
            'str': ['ir::StrAttribute', 'std::string'],
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
255
                'const std::vector<std::string>&',
256 257 258 259 260 261 262 263
            ],
            'Place': ['paddle::dialect::PlaceAttribute', 'Place'],
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
Z
zhangbo9674 已提交
264
                'ir::ArrayAttribute<ir::Int64Attribute>',
265
                'const std::vector<int64_t>&',
266 267
            ],
            'int[]': [
Z
zhangbo9674 已提交
268
                'ir::ArrayAttribute<ir::Int32Attribute>',
269
                'const std::vector<int>&',
270 271
            ],
        }
272 273
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
274 275 276
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
277
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
278 279 280
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
281 282
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

283 284 285 286 287 288
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

289 290 291 292 293 294 295 296
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

297 298 299
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
300 301 302 303 304
        if 'infer_meta' in self.op_yaml_item:
            self.infer_shape_func = self.op_yaml_item['infer_meta']["func"]
        else:
            self.infer_shape_func = None

305 306 307 308
        # parse inplace && view
        self.inplace_map = self.parse_op_inplace_info()
        self.view_map = self.parse_op_view_info()

309 310 311 312 313 314 315 316 317
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

318
    def parse_op_phi_name(self):
319 320 321
        if (self.parse_op_inplace_info() is None) and (
            self.parse_op_view_info() is None
        ):
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

337 338 339 340 341
    def parse_op_view_info(self):
        if 'view' in self.op_yaml_item:
            return self.op_yaml_item['view']
        return None

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
                        self.op_compat_item['scalar'][scalar_attr]['data_type']
                        == "std::string"
                    ):
                        # see isclose and allclose in op_compat.yaml
                        mutable_attribute_name_list.append(scalar_attr)
                        mutable_attribute_type_list.append(
                            ["ir::StrAttribute", "std::string"]
                        )
                    else:
364 365 366 367 368 369 370
                        if (
                            scalar_attr == "depth"
                            and self.op_phi_name[0] == "one_hot"
                        ):
                            mutable_attribute_name_list.append("num_classes")
                        else:
                            mutable_attribute_name_list.append(scalar_attr)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                        mutable_attribute_type_list.append(
                            [
                                "paddle::dialect::ScalarAttribute",
                                self.op_compat_item['scalar'][scalar_attr][
                                    'data_type'
                                ],
                            ]
                        )
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )

        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
477 478 479 480
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
481 482
        return optional_list

483 484 485 486 487 488 489 490 491
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

511 512 513 514 515 516 517 518 519
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

520 521 522 523
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
524 525 526 527
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
528
            else:
529
                optional_list.append("false")
530 531
        return optional_list

532 533 534 535 536 537 538 539 540 541 542 543
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

544 545 546 547 548 549
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

568 569 570 571
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
572
                attribute_info['typename'] in self.attr_types_map
573
            ), f"{self.op_phi_name} : Attr type error."
574
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
575 576
        return type_list

577 578 579 580 581 582 583 584 585
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

586 587 588 589 590 591 592 593
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
594
            else:
595 596
                default_value_list.append(None)
        return default_value_list
597

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
628 629 630 631 632 633 634 635 636 637 638


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


# =====================================
639
# Generate Op Definition Files
640
# =====================================
641 642
def GenBuildInputArgsStr(
    op_input_name_list,
643 644 645
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
646 647 648 649
    op_mutable_attribute_name_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
650
    for_func_define=True,
651
    mutable_attr_is_input=False,
652 653
):
    '''
654
    Example: ir::Builder &builder, ir::OperationArgument &argument, ir::OpResult x_, phi::DataType dtype=phi::DataType::UNDEFINED, phi::Place place={}
655
    '''
656
    # add inputs
657
    build_args_str = "ir::Builder &builder, ir::OperationArgument &argument"
658 659 660
    if len(op_input_name_list) > 0:
        for input_name in op_input_name_list:
            build_args_str += ", ir::OpResult " + input_name + "_"
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

    if not mutable_attr_is_input:
        # add attributes
        for attr_idx in range(len(op_attribute_name_list)):
            build_args_str += (
                ", "
                + op_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_attribute_name_list[attr_idx]
            )
            if for_func_define:
                if op_attribute_default_value_list[attr_idx] is not None:
                    default_value = op_attribute_default_value_list[attr_idx]
                    if (
                        op_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value
    else:
        # add mutable attributes as inputs
        if len(op_mutable_attribute_name_list) > 0:
            for mutable_attr in op_mutable_attribute_name_list:
                build_args_str += ", ir::OpResult " + mutable_attr + "_"

        # add non-mutable attributes
        for attr_idx in range(len(op_non_mutable_attribute_name_list)):
            build_args_str += (
                ", "
                + op_non_mutable_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_non_mutable_attribute_name_list[attr_idx]
            )
            if for_func_define:
698
                if (
699 700
                    op_non_mutable_attribute_default_value_list[attr_idx]
                    is not None
701
                ):
702 703 704 705 706 707 708 709 710 711 712 713 714
                    default_value = op_non_mutable_attribute_default_value_list[
                        attr_idx
                    ]
                    if (
                        op_non_mutable_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value

715 716 717
    return build_args_str


718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
mutable_attribute_phi_type_maps = {
    'int': 'phi::DataType::INT32',
    'int64_t': 'phi::DataType::INT64',
    'float': 'phi::DataType::FLOAT32',
    'std::vector<int64_t>': 'phi::DataType::INT64',
    'const std::vector<int64_t>&': 'phi::DataType::INT64',
}


def GenBuildInserFullForMutableAttribute(
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
):
    build_mutable_attribute = ""
    BUILD_INTARRAY_ATTRIBUTE_TEMPLATE = """  // Generate int_array mutable attribute: {attr_name}
  paddle::dialect::FullIntArrayOp full_{attr_name}_op = builder.Build<paddle::dialect::FullIntArrayOp>({attr_name}, {phi_dtype}, phi::CPUPlace());
736
  ir::OpResult {attr_name}_ = full_{attr_name}_op->result(0);
737 738 739
    """
    BUILD_SCALAR_ATTRIBUTE_TEMPLATE = """  // Generate scalar mutable attribute: {attr_name}
  paddle::dialect::FullOp full_{attr_name}_op = builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{{1}}, {attr_name}, {phi_dtype}, phi::CPUPlace());
740
  ir::OpResult {attr_name}_ = full_{attr_name}_op->result(0);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    """
    for idx in range(len(op_mutable_attribute_name_list)):
        attr_name = op_mutable_attribute_name_list[idx]
        attr_type = op_mutable_attribute_type_list[idx][0]
        if attr_name in op_attribute_name_list:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_attribute_build_arg_type_list[
                    op_attribute_name_list.index(attr_name)
                ]
            ]
        else:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_mutable_attribute_type_list[idx][1]
            ]
        if attr_type == "paddle::dialect::IntArrayAttribute":
            build_mutable_attribute += BUILD_INTARRAY_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
        else:
            build_mutable_attribute += BUILD_SCALAR_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
    return build_mutable_attribute


766
def GenBuildInputs(op_input_name_list, op_mutable_attribute_name_list):
767
    BUILD_INPUT_TEMPLATE = """  std::vector<ir::OpResult> argument_inputs = {{{inputs_args}}};
768
  argument.AddOperands(argument_inputs.begin(), argument_inputs.end());
769
"""
770 771 772 773 774 775
    build_input_str = '  VLOG(4) << "Builder construction inputs";\n'
    input_name_list = op_input_name_list + op_mutable_attribute_name_list
    if len(input_name_list) > 0:
        inputs_args_str = ""
        inputs_args_str += "_, ".join(input_name_list) + "_"
        build_input_str += BUILD_INPUT_TEMPLATE.format(
776 777 778 779 780
            inputs_args=inputs_args_str
        )
    return build_input_str


781 782 783
def GenBuildAttributes(
    op_non_mutable_attribute_name_list, op_non_mutable_attribute_type_list
):
784 785
    INTARRAY_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::IntArray({attr}));
"""
786
    SCALAR_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = TransToIrAttribute({attr}, ir::IrContext::Instance());
787 788 789 790 791 792 793 794 795 796
"""
    STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), {attr});
"""
    ARRAY_ATTRIBUTE_TEMPLATE = """  std::vector<ir::Attribute> vec_{attr_name};
  for (size_t i = 0; i < static_cast<size_t>({attr_size}); i++) {{
    {create_attribute}
    vec_{attr_name}.push_back(attr_{attr_name});
  }}
  ir::Attribute attr_{attr_name} = ir::ArrayAttribute::get(ir::IrContext::Instance(), vec_{attr_name});
"""
797 798 799 800 801 802
    attr_str = '  VLOG(4) << "Builder construction attributes";\n'
    for idx in range(len(op_non_mutable_attribute_name_list)):
        if "ir::ArrayAttribute<" in op_non_mutable_attribute_type_list[idx]:
            inner_attribute_type = op_non_mutable_attribute_type_list[idx][
                19:-1
            ]
803 804
            if inner_attribute_type == "paddle::dialect::IntArrayAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
805 806 807
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
808
                    create_attribute=INTARRAY_STR_TEMPLATE.format(
809
                        attr_name=op_non_mutable_attribute_name_list[idx],
810
                        op_attribute_type=inner_attribute_type,
811
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
812 813 814 815
                    ),
                )
            elif inner_attribute_type == "paddle::dialect::ScalarAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
816 817 818
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
819
                    create_attribute=SCALAR_STR_TEMPLATE.format(
820 821
                        attr_name=op_non_mutable_attribute_name_list[idx],
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
822 823 824 825
                    ),
                )
            else:
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
826 827 828
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
829
                    create_attribute=STR_TEMPLATE.format(
830
                        attr_name=op_non_mutable_attribute_name_list[idx],
831
                        op_attribute_type=inner_attribute_type,
832
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
833 834 835
                    ),
                )
        elif (
836 837
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::IntArrayAttribute"
838 839
        ):
            attr_str += INTARRAY_STR_TEMPLATE.format(
840 841 842
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
843 844
            )

845 846 847 848
        elif (
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::ScalarAttribute"
        ):
849
            attr_str += SCALAR_STR_TEMPLATE.format(
850 851
                attr_name=op_non_mutable_attribute_name_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
852 853 854
            )
        else:
            attr_str += STR_TEMPLATE.format(
855 856 857
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
858
            )
859
        attr_str += """  argument.AddAttribute("{attr_name}", attr_{attr_name});\n""".format(
860
            attr_name=op_non_mutable_attribute_name_list[idx]
861 862 863 864 865 866 867 868
        )

    return attr_str


def GenBuildOutputs(
    op_input_name_list,
    op_input_type_list,
869 870
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
871 872 873 874
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
875
    mutable_attr_is_input=False,
876
):
877
    build_output_str = '  VLOG(4) << "Builder construction outputs";\n'
878 879 880 881 882 883 884 885 886
    CREATE_INPUT_METATENSOR_TEMPLATE = """
  VLOG(4) << "Builder construction  dense_{name}";
  phi::DenseTensor dense_{name}(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                phi::DenseTensorMeta(TransToPhiDataType({name}.dtype()),
                                                     {name}.dims(),
                                                     {name}.data_layout(),
                                                     {name}.lod(),
                                                     {name}.offset()));
  VLOG(4) << "Builder construction  meta_{name}";
887 888
  phi::MetaTensor meta_{name}(&dense_{name});
"""
889
    CREATE_INPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name};
890
  for (size_t i=0; i < static_cast<size_t>({name}.size()); i++) {{
891 892 893 894 895 896 897 898 899
    vec_dense_{name}.push_back(phi::DenseTensor(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                                phi::DenseTensorMeta(TransToPhiDataType({name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dtype()),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dims(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().data_layout(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().lod(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().offset())));
  }}
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < vec_dense_{name}.size(); i++) {{
900 901
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
902

903 904 905 906 907
  std::vector<const phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
 """
908

909 910
    CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE = """  std::vector<int64_t> {name} = {name}_.owner()->dyn_cast<paddle::dialect::FullIntArrayOp>().attributes().at("value").dyn_cast<paddle::dialect::IntArrayAttribute>().data().GetData(); (void){name};\n"""
    CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE = """  {dtype} {name} = {name}_.owner()->dyn_cast<paddle::dialect::FullOp>().attributes().at("value").dyn_cast<paddle::dialect::ScalarAttribute>().data().to<{dtype}>(); (void){name};\n"""
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    CREATE_OUTPUT_METATENSOR_TEMPLATE = """  phi::DenseTensor dense_{name};
  phi::MetaTensor meta_{name}(&dense_{name});
"""
    CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name}(({output_size}), phi::DenseTensor());
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
  std::vector<phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
"""
    # Prepar input type
    for idx in range(len(op_input_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_input_type_list[idx]:
            build_output_str += "  ir::VectorType {name} = {name}_.type().dyn_cast<ir::VectorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )
        # is a Tensor
        else:
            build_output_str += "  paddle::dialect::DenseTensorType {name} = {name}_.type().dyn_cast<paddle::dialect::DenseTensorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    # Prepare mutable attributes
    if mutable_attr_is_input:
        for idx in range(len(op_mutable_attribute_name_list)):
            attr_dtype = op_mutable_attribute_type_list[idx]
            # int_array
            if attr_dtype[0] == "paddle::dialect::IntArrayAttribute":
                build_output_str += (
                    CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx]
                    )
                )
            # scalar
            elif attr_dtype[0] == "paddle::dialect::ScalarAttribute":
                build_output_str += (
                    CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        dtype=attr_dtype[1],
                    )
                )
            # string
            elif attr_dtype[0] == "ir::StrAttribute":
                build_output_str += ""
            else:
                assert "mutable attribtue type is not right."
        build_output_str += "\n"

964
    # Prepare inputs_meta_tensor & attributes for infer meta
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    infer_meta_args = []
    for idx in range(len(op_infer_meta_map['param'])):
        # is input
        if op_infer_meta_map['param'][idx] in op_input_name_list:
            if (
                "meta_" + op_infer_meta_map['param'][idx]
            ) not in infer_meta_args:
                # is a vector<Tensor>
                if (
                    'ir::VectorType'
                    in op_input_type_list[
                        op_input_name_list.index(
                            op_infer_meta_map['param'][idx]
                        )
                    ]
                ):
                    build_output_str += (
                        CREATE_INPUT_VEC_METATENSOR_TEMPLATE.format(
                            name=op_infer_meta_map['param'][idx]
                        )
                    )
                # is a Tensor
                else:
                    build_output_str += CREATE_INPUT_METATENSOR_TEMPLATE.format(
                        name=op_infer_meta_map['param'][idx]
                    )

            infer_meta_args.append("meta_" + op_infer_meta_map['param'][idx])
        # is attribute
        else:
            infer_meta_args.append(op_infer_meta_map['param'][idx])

997
    # Prepare outputs_meta_tensor for infer meta
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
            infer_meta_args.append(f"meta_{op_output_name_list[idx]}")
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )
            infer_meta_args.append(f"&meta_{op_output_name_list[idx]}")

    # Execute infer meta function
    CREATE_INFER_META_FUNC_TEMPLATE = """
  phi::{func}({args});
"""
    build_output_str += CREATE_INFER_META_FUNC_TEMPLATE.format(
        func=op_infer_meta_map['func'], args=", ".join(infer_meta_args)
    )

    # use dense_{name} or vec_dense_{name} to create Outputs type
    build_output_str += "\n  std::vector<ir::Type> argument_outputs;"

    CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE = """
  ir::Type {name}_dense_tensor_type = paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(dense_{name}.dtype()), dense_{name}.dims(), dense_{name}.layout(), dense_{name}.lod(), dense_{name}.offset());
  argument_outputs.push_back({name}_dense_tensor_type);
"""
    CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE = """
  std::vector<ir::Type> {name}_types;
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    {name}_types.push_back(paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(vec_dense_{name}[i].dtype()), vec_dense_{name}[i].dims(), vec_dense_{name}[i].layout(), vec_dense_{name}[i].lod(), vec_dense_{name}[i].offset()));
  }}
  ir::Type {name}_vector_type = ir::VectorType::get(ir::IrContext::Instance(), {name}_types);
  argument_outputs.push_back({name}_vector_type);
"""
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )

1049
    build_output_str += "  argument.AddTypes(argument_outputs.begin(), argument_outputs.end());\n"
1050 1051 1052 1053

    return build_output_str


1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
def GenBuild(
    op_class_name,
    op_input_name_list,
    op_input_type_list,
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_type_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
    muta_attr_is_input=False,
):
    build_args_for_declare = ""
    build_func = ""

    build_args_for_declare = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        True,
        muta_attr_is_input,
    )

    build_args_for_define = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        False,
        muta_attr_is_input,
    )
    inset_full_for_mutable_attributes_str = ""
    if not muta_attr_is_input:
        inset_full_for_mutable_attributes_str = (
            GenBuildInserFullForMutableAttribute(
                op_attribute_name_list,
                op_attribute_build_arg_type_list,
                op_mutable_attribute_name_list,
                op_mutable_attribute_type_list,
            )
        )

    build_inputs_str = GenBuildInputs(
        op_input_name_list, op_mutable_attribute_name_list
    )
    build_attributes_str = GenBuildAttributes(
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_type_list,
    )
    build_outputs_str = GenBuildOutputs(
        op_input_name_list,
        op_input_type_list,
        op_mutable_attribute_name_list,
        op_mutable_attribute_type_list,
        op_output_name_list,
        op_output_type_list,
        op_output_size_list,
        op_infer_meta_map,
1128
        muta_attr_is_input,
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    )

    build_func = OP_BUILD_TEMPLATE.format(
        op_name=op_class_name,
        build_args=build_args_for_define,
        build_mutable_attributes=inset_full_for_mutable_attributes_str,
        build_inputs=build_inputs_str,
        build_attributes=build_attributes_str,
        build_outputs=build_outputs_str,
    )

    return (build_args_for_declare, build_func)


1143 1144
def OpGenerator(
    op_yaml_files,
1145
    op_compat_yaml_file,
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
1158 1159
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

1160 1161 1162 1163 1164 1165 1166
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
1167 1168 1169
        op_info_items.append(
            OpInfoParser(op, op_compat_parser.get_compat(op['name']))
        )
1170 1171 1172 1173 1174 1175

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
1176
        # get op inputs info
1177 1178 1179
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
1180
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
1181
        # get op outputs info
1182 1183
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
1184
        op_output_size_list = op_info.output_size_list
1185
        op_output_optional_list = op_info.output_optional_list
1186
        op_output_intermediate_list = op_info.output_intermediate_list
1187 1188 1189 1190
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
1191 1192
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
1193
        op_attribute_data_type_list = op_info.attribute_data_type_list
1194 1195
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

1212
        # others
1213 1214
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
1215 1216
        op_inplace_map = op_info.inplace_map
        op_view_map = op_info.view_map
1217
        op_interfaces = ["OpYamlInfoInterface"]
1218 1219
        op_traits = []

H
hong 已提交
1220 1221 1222 1223 1224 1225 1226
        exclusive_interface_str = ""
        if op_info.infer_shape_func:
            op_interfaces += ["InferShapeInterface"]
            exclusive_interface_str += (
                "  static void InferShape( phi::InferMetaContext *infer_meta );"
            )

1227 1228 1229 1230 1231
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

1232 1233 1234
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
1235 1236 1237 1238 1239 1240 1241
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

1242 1243 1244
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
1245 1246 1247 1248 1249 1250
            op_get_inputs_outputs_str = ""
            for idx in range(len(op_input_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_input_name_list[idx],
                    input_index=idx,
                )
1251 1252 1253 1254 1255
            for idx in range(len(op_mutable_attribute_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_mutable_attribute_name_list[idx],
                    input_index=idx + len(op_input_name_list),
                )
1256 1257 1258 1259 1260
            for idx in range(len(op_output_name_list)):
                op_get_inputs_outputs_str += OP_GET_OUTPUT_TEMPLATE.format(
                    output_name=op_output_name_list[idx],
                    output_index=idx,
                )
1261

1262 1263 1264 1265 1266 1267 1268 1269
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
            build_func_with_muta_attr_is_input = ""

1270
            if op_infer_meta_map is not None:
1271 1272 1273 1274 1275
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
                ) = GenBuild(
                    op_class_name,
1276
                    op_input_name_list,
1277 1278 1279 1280
                    op_input_type_list,
                    op_attribute_name_list,
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
1281
                    op_mutable_attribute_name_list,
1282
                    op_mutable_attribute_type_list,
1283
                    op_non_mutable_attribute_name_list,
1284
                    op_non_mutable_attribute_type_list,
1285 1286
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
1287 1288 1289 1290
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
1291
                    muta_attr_is_input=False,
1292
                )
1293
                if len(op_mutable_attribute_name_list) > 0:
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
                    ) = GenBuild(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
1320

1321
            # gen op_declare_str/op_defined_str
1322
            if len(op_non_mutable_attribute_name_list) == 0:
1323 1324 1325 1326 1327 1328 1329
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
1330 1331
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1332
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1333
                    exclusive_interface=exclusive_interface_str,
1334 1335 1336 1337 1338 1339 1340 1341 1342
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
1343
                        attribute_num=len(op_non_mutable_attribute_name_list)
1344
                    ),
1345
                    attribute_num=len(op_non_mutable_attribute_name_list),
1346 1347
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1348
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1349
                    exclusive_interface=exclusive_interface_str,
1350 1351
                )
                attribute_names_str = (
1352
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
1353 1354 1355
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
1356
                    attribute_num=len(op_non_mutable_attribute_name_list),
1357 1358
                    attribute_names=attribute_names_str,
                )
1359

1360 1361 1362
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
1363
            # generate get op info funciton: inputs
1364
            input_info_list = []
1365 1366 1367 1368 1369 1370 1371 1372
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
1373
                    )
1374 1375 1376 1377 1378 1379 1380 1381 1382
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
1383
                    )
1384 1385 1386 1387 1388
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
1401
                    )
1402 1403 1404
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
1405
            if len(op_non_mutable_attribute_name_list) > 0:
1406
                attribute_info_list = []
1407
                for idx in range(len(op_non_mutable_attribute_name_list)):
1408 1409
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
1410 1411 1412 1413 1414
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
1415
                        )
1416
                    )
1417
                attribute_info_str = ", ".join(attribute_info_list)
1418 1419 1420 1421 1422 1423
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
1424

1425 1426
            kernel_func_str = ""
            kernel_param_str = ""
1427
            kernel_key_dtype = ""
1428 1429 1430
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])
1431 1432 1433 1434
                if 'data_type' in op_kernel_map and op_kernel_map['data_type']:
                    kernel_key_dtype = '", "'.join(
                        op_kernel_map['data_type']['candidates']
                    )
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
            inplace_str = ""
            view_str = ""
            if op_name[-1] == "_":
                if op_inplace_map is not None:
                    for key, value in op_inplace_map.items():
                        inplace_str += '{"' + key + '", "' + value + '"},'
                    inplace_str = inplace_str[:-1]
                if op_view_map is not None:
                    for key, value in op_view_map.items():
                        view_str += '{"' + key + '", "' + value + '"},'
                    view_str = view_str[:-1]

1448 1449 1450 1451 1452
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1453 1454 1455 1456
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1457
                kernel_key_dtype=kernel_key_dtype,
1458 1459
                inplace=inplace_str,
                view=view_str,
1460
            )
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
            # generate op verify function str
            op_verify_str = gen_verify_func_str(
                op_class_name,
                op_input_type_list,
                op_input_optional_list,
                op_mutable_attribute_name_list,
                op_mutable_attribute_type_list,
                op_non_mutable_attribute_name_list,
                op_non_mutable_attribute_type_list,
                op_output_type_list,
                op_output_optional_list,
            )
1474

H
hong 已提交
1475 1476 1477 1478 1479 1480 1481
            op_infer_shape_str = ""
            if op_info.infer_shape_func:
                op_infer_shape_str = OP_INFER_SHAPE_TEMPLATE.format(
                    op_name=op_class_name,
                    infer_meta_func=op_info.infer_shape_func,
                )

1482 1483 1484 1485
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1486 1487 1488
            ops_defined_list.append(build_func_with_muta_attr_not_input)
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1489
            ops_defined_list.append(op_verify_str)
H
hong 已提交
1490
            ops_defined_list.append(op_infer_shape_str)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
1502 1503 1504 1505 1506

    declare_type_id_str = ""
    for op in ops_name_with_namespace_list:
        declare_type_id_str += DECLARE_OP_TYPE_ID.format(op_name=op)

1507 1508 1509 1510 1511 1512 1513
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
1514 1515 1516
        op_declare=op_list_str,
        input=head_file_str,
        declare_type_id=declare_type_id_str,
1517 1518 1519 1520 1521 1522 1523 1524
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
1525 1526 1527 1528 1529

    define_type_id_str = ""
    for op in ops_name_with_namespace_list:
        define_type_id_str += DEFINE_OP_TYPE_ID.format(op_name=op)

1530
    source_file_str = CC_FILE_TEMPLATE.format(
1531 1532 1533
        h_file=op_def_h_file[:-4],
        input=source_file_str,
        define_type_id=define_type_id_str,
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
1577
        op_compat_yaml_file,
1578 1579 1580 1581 1582
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )