jit_kernel_crf_decode.cc 17.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <limits>
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

/* CRF Decode JitKernel */
T
tensor-tang 已提交
26
template <typename T, platform::cpu_isa_t isa, jit_block>
T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
class CRFDecodeKernelImpl : public CRFDecodeKernel<T> {
 public:
  explicit CRFDecodeKernelImpl(int tag_num) : CRFDecodeKernel<T>() {
    this->num_ = tag_num;
  }
  void Compute(const int seq_len, const T* x, const T* w, T* alpha,
               int* track) const override {
    constexpr int state_trans_base_idx = 2;
    for (int i = 0; i < this->num_; ++i) {
      alpha[i] = w[i] + x[i];
    }
    for (int k = 1; k < seq_len; ++k) {
      for (int i = 0; i < this->num_; ++i) {
        T max_score = -std::numeric_limits<T>::max();
        int max_j = 0;
        for (int j = 0; j < this->num_; ++j) {
          T score = alpha[(k - 1) * this->num_ + j] +
                    w[(j + state_trans_base_idx) * this->num_ + i];
          if (score > max_score) {
            max_score = score;
            max_j = j;
          }
        }
        alpha[k * this->num_ + i] = max_score + x[k * this->num_ + i];
        track[k * this->num_ + i] = max_j;
      }
    }
  }
};

#define INIT_ALPHA(step_size)                                               \
  /* Setup the alpha initial value.*/                                       \
  int i_offset = 0;                                                         \
  int last_offset = this->rest_ - step_size;                                \
  for (int i = 0; i <= this->end_; ++i) {                                   \
    /* weights, input and alpha values. */                                  \
    __m256 w_content, x_content, alpha_content;                             \
    /* Load the relevant data into the variables from un-aligned address.*/ \
    w_content = _mm256_loadu_ps(w + i_offset);                              \
    x_content = _mm256_loadu_ps(x + i_offset);                              \
    alpha_content = _mm256_add_ps(w_content, x_content);                    \
    _mm256_storeu_ps(alpha + i_offset, alpha_content);                      \
    i_offset += step_size;                                                  \
    if (i == this->end_ - 1) {                                              \
      if (this->rest_ > 0) {                                                \
        i_offset += last_offset;                                            \
      } else {                                                              \
        break;                                                              \
      }                                                                     \
    }                                                                       \
  }

#define UPDATE_ALPHA(step_size)                                               \
  /* Update the alpha and track values. */                                    \
  __m256 x_content = _mm256_loadu_ps(x + seq_offset + this->num_ + j_offset); \
  max_score = _mm256_add_ps(max_score, x_content);                            \
  _mm256_storeu_ps(alpha + seq_offset + this->num_ + j_offset, max_score);    \
  _mm256_storeu_si256(                                                        \
      reinterpret_cast<__m256i*>(track + seq_offset + this->num_ + j_offset), \
      max_j);                                                                 \
  /* Calculate the offset of next step*/                                      \
  j_offset += step_size;                                                      \
  if (j == this->end_ - 1) {                                                  \
    if (this->rest_ > 0) {                                                    \
      j_offset += last_offset;                                                \
    } else {                                                                  \
      break;                                                                  \
    }                                                                         \
  }

#define INTRIAVX_FLOAT(block)                                                  \
  template <>                                                                  \
T
tensor-tang 已提交
99
  CRFDecodeKernelImpl<float, platform::avx, block>::CRFDecodeKernelImpl(       \
T
tensor-tang 已提交
100 101 102
      int tag_num)                                                             \
      : CRFDecodeKernel<float>() {                                             \
    this->num_ = tag_num;                                                      \
103 104
    this->end_ = this->num_ / YMM_FLOAT_BLOCK;                                 \
    this->rest_ = this->num_ % YMM_FLOAT_BLOCK;                                \
T
tensor-tang 已提交
105 106
  }                                                                            \
  template <>                                                                  \
T
tensor-tang 已提交
107
  void CRFDecodeKernelImpl<float, platform::avx, block>::Compute(              \
T
tensor-tang 已提交
108 109
      const int seq_len, const float* x, const float* w, float* alpha,         \
      int* track) const {                                                      \
110
    INIT_ALPHA(YMM_FLOAT_BLOCK)                                                \
T
tensor-tang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    /* Use the column-major strategy to get the location of maximum score.*/   \
    int seq_offset = 0;                                                        \
    constexpr int state_trans_base_idx = 2;                                    \
    for (int k = 1; k < seq_len; ++k) {                                        \
      int j_offset = 0;                                                        \
      for (int j = 0; j <= this->end_; ++j) {                                  \
        /* Initialize the variables of maximum score and location.*/           \
        __m256 max_score = _mm256_set1_ps(-std::numeric_limits<float>::max()); \
        __m256i max_j = _mm256_set1_epi32(0);                                  \
        /* Calculate the offset of transition_weights.*/                       \
        int trans_offset = state_trans_base_idx * this->num_ + j_offset;       \
        for (int i = 0; i < this->num_; ++i) {                                 \
          /* Initalize the content of alpha variable with related offset.*/    \
          __m256 alpha_content = _mm256_broadcast_ss(alpha + seq_offset + i);  \
          /* Obtain the content of weights from un-aligned address.*/          \
          __m256 w_content = _mm256_loadu_ps(w + trans_offset);                \
          __m256 score_v = _mm256_add_ps(alpha_content, w_content);            \
          __m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS);         \
          /* According to the mask value, update the index of the max_score.*/ \
          /* AVX instructions.*/                                               \
          __m128i lo_max_j = _mm256_extractf128_si256(max_j, 0);               \
          __m128i hi_max_j = _mm256_extractf128_si256(max_j, 1);               \
P
peizhilin 已提交
133 134
          __m128i lo_mask = _mm256_extractf128_si256(*(__m256i*)&mask, 0);     \
          __m128i hi_mask = _mm256_extractf128_si256(*(__m256i*)&mask, 1);     \
T
tensor-tang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147
          lo_max_j = _mm_andnot_si128(lo_mask, lo_max_j);                      \
          hi_max_j = _mm_andnot_si128(hi_mask, hi_max_j);                      \
          lo_mask = _mm_and_si128(lo_mask, _mm_set1_epi32(i));                 \
          hi_mask = _mm_and_si128(hi_mask, _mm_set1_epi32(i));                 \
          lo_max_j = _mm_or_si128(lo_mask, lo_max_j);                          \
          hi_max_j = _mm_or_si128(hi_mask, hi_max_j);                          \
          max_j = _mm256_insertf128_si256(max_j, lo_max_j, 0);                 \
          max_j = _mm256_insertf128_si256(max_j, hi_max_j, 1);                 \
          /* AVX done*/                                                        \
          /* Update the max_score value.*/                                     \
          max_score = _mm256_max_ps(max_score, score_v);                       \
          trans_offset += this->num_;                                          \
        }                                                                      \
148
        UPDATE_ALPHA(YMM_FLOAT_BLOCK)                                          \
T
tensor-tang 已提交
149 150 151 152 153
      }                                                                        \
      seq_offset += this->num_;                                                \
    }                                                                          \
  }

T
tensor-tang 已提交
154
#define INTRIAVX2_FLOAT(isa, block)                                            \
T
tensor-tang 已提交
155
  template <>                                                                  \
T
tensor-tang 已提交
156
  CRFDecodeKernelImpl<float, isa, block>::CRFDecodeKernelImpl(int tag_num)     \
T
tensor-tang 已提交
157 158
      : CRFDecodeKernel<float>() {                                             \
    this->num_ = tag_num;                                                      \
159 160
    this->end_ = this->num_ / YMM_FLOAT_BLOCK;                                 \
    this->rest_ = this->num_ % YMM_FLOAT_BLOCK;                                \
T
tensor-tang 已提交
161 162
  }                                                                            \
  template <>                                                                  \
T
tensor-tang 已提交
163
  void CRFDecodeKernelImpl<float, isa, block>::Compute(                        \
T
tensor-tang 已提交
164 165
      const int seq_len, const float* x, const float* w, float* alpha,         \
      int* track) const {                                                      \
166
    INIT_ALPHA(YMM_FLOAT_BLOCK)                                                \
T
tensor-tang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    /* Use the column-major strategy to get the location of maximum score.*/   \
    int seq_offset = 0;                                                        \
    constexpr int state_trans_base_idx = 2;                                    \
    for (int k = 1; k < seq_len; ++k) {                                        \
      int j_offset = 0;                                                        \
      for (int j = 0; j <= this->end_; ++j) {                                  \
        /* Initialize the variables of maximum score and location.*/           \
        __m256 max_score = _mm256_set1_ps(-std::numeric_limits<float>::max()); \
        __m256i max_j = _mm256_set1_epi32(0);                                  \
        /* Calculate the offset of transition_weights.*/                       \
        int trans_offset = state_trans_base_idx * this->num_ + j_offset;       \
        for (int i = 0; i < this->num_; ++i) {                                 \
          /* Initalize the content of alpha variable with related offset.*/    \
          __m256 alpha_content = _mm256_broadcast_ss(alpha + seq_offset + i);  \
          /* Obtain the content of weights from un-aligned address.*/          \
          __m256 w_content = _mm256_loadu_ps(w + trans_offset);                \
          __m256 score_v = _mm256_add_ps(alpha_content, w_content);            \
          __m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS);         \
          /* According to the mask value, update the index of the max_score.*/ \
          /* AVX2 instructions.*/                                              \
          max_j = _mm256_or_si256(                                             \
              _mm256_andnot_si256((__m256i)mask, max_j),                       \
              _mm256_and_si256((__m256i)mask, _mm256_set1_epi32(i)));          \
          /* Update the max_score value.*/                                     \
          max_score = _mm256_max_ps(max_score, score_v);                       \
          trans_offset += this->num_;                                          \
        }                                                                      \
194
        UPDATE_ALPHA(YMM_FLOAT_BLOCK)                                          \
T
tensor-tang 已提交
195 196 197 198 199 200 201
      }                                                                        \
      seq_offset += this->num_;                                                \
    }                                                                          \
  }

#define INTRIAVX512_FLOAT(block)                                               \
  template <>                                                                  \
T
tensor-tang 已提交
202
  CRFDecodeKernelImpl<float, platform::avx512f, block>::CRFDecodeKernelImpl(   \
T
tensor-tang 已提交
203 204 205
      int tag_num)                                                             \
      : CRFDecodeKernel<float>() {                                             \
    this->num_ = tag_num;                                                      \
206 207
    this->end_ = this->num_ / ZMM_FLOAT_BLOCK;                                 \
    this->rest_ = this->num_ % ZMM_FLOAT_BLOCK;                                \
T
tensor-tang 已提交
208 209
  }                                                                            \
  template <>                                                                  \
T
tensor-tang 已提交
210
  void CRFDecodeKernelImpl<float, platform::avx512f, block>::Compute(          \
T
tensor-tang 已提交
211 212
      const int seq_len, const float* x, const float* w, float* alpha,         \
      int* track) const {                                                      \
213
    INIT_ALPHA(ZMM_FLOAT_BLOCK)                                                \
T
tensor-tang 已提交
214 215 216 217 218 219 220
    /* Use the column-major strategy to get the location of maximum score.*/   \
    int seq_offset = 0;                                                        \
    constexpr int state_trans_base_idx = 2;                                    \
    for (int k = 1; k < seq_len; ++k) {                                        \
      int j_offset = 0;                                                        \
      for (int j = 0; j <= this->end_; ++j) {                                  \
        /* Initialize the variables of maximum score and location.*/           \
T
tensor-tang 已提交
221
        __m512 max_score = _mm512_set1_ps(-std::numeric_limits<float>::max()); \
T
tensor-tang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        __m512i max_j = _mm512_setzero_si512();                                \
        /* Calculate the offset of transition_weights.*/                       \
        int trans_offset = state_trans_base_idx * this->num_ + j_offset;       \
        for (int i = 0; i < this->num_; ++i) {                                 \
          /* Initalize the content of alpha variable with related offset.*/    \
          __m512 alpha_content = _mm512_set1_ps(*(alpha + seq_offset + i));    \
          /* Obtain the content of weights from un-aligned address.*/          \
          __m512 w_content = _mm512_loadu_ps(w + trans_offset);                \
          __m512 score_v = _mm512_add_ps(alpha_content, w_content);            \
          __mmask16 mask = _mm512_cmp_ps_mask(score_v, max_score, _CMP_GT_OS); \
          /* AVX512 instructions.*/                                            \
          max_j = _mm512_mask_set1_epi32(max_j, mask, i);                      \
          /* Update the max_score value.*/                                     \
          max_score = _mm512_max_ps(max_score, score_v);                       \
          trans_offset += this->num_;                                          \
        }                                                                      \
        /* Update the alpha and track values.*/                                \
        __m512 x_content =                                                     \
            _mm512_loadu_ps(x + seq_offset + this->num_ + j_offset);           \
        max_score = _mm512_add_ps(max_score, x_content);                       \
T
tensor-tang 已提交
242
        _mm512_storeu_ps(alpha + seq_offset + this->num_ + j_offset,           \
T
tensor-tang 已提交
243 244 245 246 247
                         max_score);                                           \
        _mm512_storeu_si512(reinterpret_cast<__m512i*>(track + seq_offset +    \
                                                       this->num_ + j_offset), \
                            max_j);                                            \
        /* Calculate the offset of next step*/                                 \
248
        j_offset += ZMM_FLOAT_BLOCK;                                           \
T
tensor-tang 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        if (j == this->end_ - 1) {                                             \
          if (this->rest_ > 0) {                                               \
            j_offset += last_offset;                                           \
          } else {                                                             \
            break;                                                             \
          }                                                                    \
        }                                                                      \
      }                                                                        \
      seq_offset += this->num_;                                                \
    }                                                                          \
  }

#ifdef __AVX__
INTRIAVX_FLOAT(kEQ8);
INTRIAVX_FLOAT(kGT8LT16);
INTRIAVX_FLOAT(kEQ16);
INTRIAVX_FLOAT(kGT16);
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
268 269 270 271
INTRIAVX2_FLOAT(platform::avx2, kEQ8);
INTRIAVX2_FLOAT(platform::avx2, kGT8LT16);
INTRIAVX2_FLOAT(platform::avx2, kEQ16);
INTRIAVX2_FLOAT(platform::avx2, kGT16);
T
tensor-tang 已提交
272 273
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
274 275
INTRIAVX2_FLOAT(platform::avx512f, kEQ8);
INTRIAVX2_FLOAT(platform::avx512f, kGT8LT16);
T
tensor-tang 已提交
276 277 278 279 280 281 282 283 284 285
INTRIAVX512_FLOAT(kEQ16);
INTRIAVX512_FLOAT(kGT16);
#endif

#undef INTRIAVX512_FLOAT
#undef INTRIAVX2_FLOAT
#undef INTRIAVX_FLOAT
#undef INIT_ALPHA
#undef UPDATE_ALPHA

T
tensor-tang 已提交
286
REGISTER_JITKERNEL_DEPRECATED(crf_decode, CRFDecodeKernel);
T
tensor-tang 已提交
287 288 289 290 291

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle