eager.cc 55.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13
#include "paddle/fluid/pybind/eager.h"

14
#include <Python.h>
15 16 17 18
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
19 20 21 22

#include <string>
#include <vector>

23
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
24 25 26
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
27
#include "paddle/fluid/framework/convert_utils.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager_utils.h"
32 33 34
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
35
#include "pybind11/detail/internals.h"
36 37
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
38
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
39
#include "paddle/fluid/framework/phi_utils.h"
40
#include "paddle/fluid/framework/python_headers.h"
41
#include "paddle/fluid/pybind/exception.h"
42
#include "paddle/fluid/pybind/tensor_py.h"
J
Jack Zhou 已提交
43
#include "paddle/phi/core/string_tensor.h"
L
LiYuRio 已提交
44 45 46 47

#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_attr.h"
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
48
using phi::distributed::DistTensor;
L
LiYuRio 已提交
49 50 51
using phi::distributed::auto_parallel::TensorDistAttr;
#endif

52 53 54 55 56
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

57 58
extern PyTypeObject* p_tensor_type;
extern PyTypeObject* p_string_tensor_type;  // For StringTensor
59
extern PyTypeObject* g_vartype_pytype;
60
extern PyTypeObject* g_framework_tensor_pytype;
61

62
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
63 64
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
65
    auto v = reinterpret_cast<TensorObject*>(obj);
66
    new (&(v->tensor)) paddle::Tensor();
67 68 69 70
  }
  return obj;
}

L
LiYuRio 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef PADDLE_WITH_DISTRIBUTE
void EmptyDistTensorInitializer(
    TensorObject* self,
    const std::string& name,
    const paddle::platform::Place& place,
    const std::shared_ptr<TensorDistAttr>& dist_attr,
    bool persistable = false,
    int stop_gradient = -1,
    framework::proto::VarType::Type dtype =
        paddle::framework::proto::VarType::FP32,
    const std::vector<int>& dims = {0}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
  autograd_meta->SetPersistable(persistable);
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }

  std::shared_ptr<DistTensor> dist_tensor = nullptr;
  if (dims.size() == 1 && dims[0] == 0) {
    std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
    dist_tensor = std::make_shared<DistTensor>(
        allocation_ptr,
        phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                             ddims),
        dist_attr);
  } else {
    dist_tensor = std::make_shared<DistTensor>(
        std::make_shared<phi::Allocation>(),
        phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                             ddims),
        dist_attr);
  }
  self->tensor.set_impl(dist_tensor);

  if (!autograd_meta->GetMutableGradNode()) {
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation"
            << autograd_meta->GradNode() << " for it.";
  }
}
#endif

117
// TODO(jiabin): Overload this once we need more constructor in Python
118 119
void EmptyTensorInitializer(TensorObject* self,
                            const std::string& name,
120
                            const paddle::platform::Place& place,
121 122
                            bool persistable = false,
                            int stop_gradient = -1,
123 124
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
125
                            const std::vector<int>& dims = {0},
126 127
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
128
  auto ddims = phi::make_ddim(dims);
129 130
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
131
  autograd_meta->SetPersistable(persistable);
132 133 134
  if (stop_gradient != -1) {
    autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  }
135 136
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
137
    std::shared_ptr<phi::DenseTensor> dense_tensor = nullptr;
138
    if (dims.size() == 1 && dims[0] == 0) {
139 140 141 142 143 144 145 146
      std::shared_ptr<phi::Allocation> allocation_ptr = nullptr;
      dense_tensor = std::make_shared<phi::DenseTensor>(
          allocation_ptr,
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    } else {
      // TODO(dev): we need enhance check for ddims.
      dense_tensor = std::make_shared<phi::DenseTensor>(
Z
zyfncg 已提交
147
          std::make_shared<phi::Allocation>(),
148 149 150
          phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype),
                               ddims));
    }
151
    self->tensor.set_impl(dense_tensor);
152 153 154 155
  } else if (var_type == paddle::framework::proto::VarType::SELECTED_ROWS) {
    std::shared_ptr<phi::SelectedRows> tensor =
        std::make_shared<phi::SelectedRows>();
    self->tensor.set_impl(tensor);
156 157 158
  }

  if (!autograd_meta->GetMutableGradNode()) {
159 160
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
161 162 163
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation"
            << autograd_meta->GradNode() << " for it.";
164 165 166
  }
}

167 168
void EmptyStringTensorInitializer(TensorObject* self,
                                  const std::string& name,
J
Jack Zhou 已提交
169 170 171 172 173 174 175
                                  const paddle::platform::Place& place,
                                  const std::vector<int>& dims = {}) {
  auto ddims = phi::make_ddim(dims);
  self->tensor.set_name(name);
  // Note(zhoushunjie): Only support CPUPlace when create StringTensor
  auto actual_place = platform::CPUPlace();
  // Allocate memory
176
  paddle::experimental::DefaultAllocator string_allocator(actual_place);
J
Jack Zhou 已提交
177
  std::shared_ptr<phi::StringTensor> string_tensor =
178 179
      std::make_shared<phi::StringTensor>(&string_allocator,
                                          phi::StringTensorMeta{ddims});
J
Jack Zhou 已提交
180 181 182 183 184 185
  if (phi::product(ddims) > 0) {
    string_tensor->mutable_data(actual_place);
  }
  self->tensor.set_impl(string_tensor);
}

L
LiYuRio 已提交
186 187 188 189 190 191 192 193
#ifdef PADDLE_WITH_DISTRIBUTE
void InitDistTensorWithNumpyValue(TensorObject* self,
                                  const py::object& array,
                                  const paddle::platform::Place& place,
                                  bool zero_copy = false) {
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
194
      paddle::platform::errors::Unavailable(
L
LiYuRio 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
          "Calling InitDistTensorWithNumpyValue of Eager Tensor without "
          "EmptyDistTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  DistTensor* dist_tensor_ptr =
      static_cast<DistTensor*>(self->tensor.impl().get());
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(dist_tensor_ptr->mutable_value());

  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
  } else if (platform::is_xpu_place(place)) {
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
        impl_ptr, array, place, zero_copy);
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        impl_ptr, array, place, zero_copy);
  } else if (platform::is_custom_place(place)) {
    SetTensorFromPyArray<platform::CustomPlace>(
        impl_ptr, array, place, zero_copy);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/CustomPlace"));
  }

  // TODO(dev): dist_tensor meta is not equal to dense tensor meta
  dist_tensor_ptr->set_meta(impl_ptr->meta());
}
#endif

228 229
void InitTensorWithNumpyValue(TensorObject* self,
                              const py::object& array,
230
                              const paddle::platform::Place& place,
231
                              bool zero_copy = false) {
232
  PADDLE_ENFORCE_EQ(
233 234
      self->tensor.defined(),
      true,
235
      paddle::platform::errors::Unavailable(
236 237
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
238 239
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
240 241
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
L
LiYuRio 已提交
242

243
  if (platform::is_cpu_place(place)) {
244
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
245
  } else if (platform::is_xpu_place(place)) {
246
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
247
  } else if (platform::is_gpu_place(place)) {
248 249
    SetTensorFromPyArray<platform::CUDAPlace>(
        impl_ptr, array, place, zero_copy);
250
  } else if (platform::is_cuda_pinned_place(place)) {
251 252
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        impl_ptr, array, place, zero_copy);
253
  } else if (platform::is_custom_place(place)) {
254 255
    SetTensorFromPyArray<platform::CustomPlace>(
        impl_ptr, array, place, zero_copy);
256 257 258
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
张春乔 已提交
259
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/CustomPlace"));
260 261 262
  }
}

J
Jack Zhou 已提交
263 264
void InitStringTensorWithNumpyValue(TensorObject* self, const py::object& obj) {
  PADDLE_ENFORCE_EQ(
265 266
      self->tensor.defined(),
      true,
J
Jack Zhou 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
      paddle::platform::errors::Fatal(
          "Calling InitStringTensorWithNumpyValue of Eager StringTensor "
          "without "
          "EmptyStringTensorInitializer is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
  phi::StringTensor* impl_ptr =
      static_cast<phi::StringTensor*>(self->tensor.impl().get());
  paddle::platform::Place place = impl_ptr->place();
  auto array = obj.cast<py::array>();
  if (platform::is_cpu_place(place)) {
    SetStringTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

L
LiYuRio 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299
#ifdef PADDLE_WITH_DISTRIBUTE
void InitDistTensorWithTensor(
    TensorObject* self,
    const paddle::Tensor& src,
    const paddle::platform::Place& place,
    const std::string& name,
    const std::shared_ptr<TensorDistAttr>& dist_attr) {
  PADDLE_ENFORCE(src.is_dense_tensor(),
                 paddle::platform::errors::InvalidArgument(
                     "DistTensor can only initialize by DenseTensor"));
  self->tensor.set_name(name);
  if (place == src.place()) {
    std::shared_ptr<phi::DenseTensor> tensor =
        std::static_pointer_cast<phi::DenseTensor>(src.impl());
300 301
    self->tensor.set_impl(
        std::make_shared<DistTensor>(tensor, tensor->meta(), dist_attr));
302
    VLOG(4) << "Same place, do ShareDataWith for DistTensor.";
L
LiYuRio 已提交
303 304 305 306
  } else {
    std::shared_ptr<phi::DenseTensor> tensor =
        std::static_pointer_cast<phi::DenseTensor>(
            src.copy_to(place, true).impl());
307 308
    self->tensor.set_impl(
        std::make_shared<DistTensor>(tensor, tensor->meta(), dist_attr));
309
    VLOG(4) << "Different place, do TensorCopy for DistTensor.";
L
LiYuRio 已提交
310 311 312 313 314 315 316 317 318 319 320
  }
  if (src.get_autograd_meta()) {
    egr::EagerUtils::autograd_meta(&(self->tensor))
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
  }
}
#endif

321
void InitTensorWithTensor(TensorObject* self,
322
                          const paddle::Tensor& src,
323 324
                          const paddle::platform::Place& place,
                          const std::string& name) {
325
  self->tensor.set_name(name);
C
Chen Weihang 已提交
326
  if (place == src.place()) {
327
    self->tensor.set_impl(src.impl());
328 329
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
330
    self->tensor.set_impl(src.copy_to(place, true).impl());
331 332 333
    VLOG(4) << "Different place, do TensorCopy";
  }
  if (src.get_autograd_meta()) {
334
    egr::EagerUtils::autograd_meta(&(self->tensor))
335 336 337
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
338
    egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
339 340 341
  }
}

342
void InitTensorWithFrameworkTensor(TensorObject* self,
343
                                   const phi::DenseTensor& src,
344 345
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
346
  self->tensor.set_name(name);
347
  if (place == src.place()) {
348
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
349 350
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
351
    auto temp = paddle::Tensor(std::make_shared<phi::DenseTensor>(src));
352
    self->tensor.set_impl(temp.copy_to(place, true).impl());
353 354
    VLOG(4) << "Different place, do TensorCopy";
  }
355
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false);
356
}
357

J
Jack Zhou 已提交
358
void InitStringTensorWithStringTensor(TensorObject* self,
359
                                      const paddle::Tensor& src,
J
Jack Zhou 已提交
360 361 362 363 364 365 366 367 368
                                      const paddle::platform::Place& place,
                                      const std::string& name) {
  self->tensor.set_name(name);
  auto impl = std::static_pointer_cast<phi::StringTensor>(src.impl());
  self->tensor.set_impl(impl);
  VLOG(4)
      << "Do ShareDataWith when using StringTensor to initialize StringTensor";
}

369 370
py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
371 372 373 374
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
375 376 377 378 379 380
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
381
    if (flag_kwargs && kws_map["value"] != nullptr) {
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
397 398 399 400
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
401 402 403 404 405 406 407
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
408
    if (flag_kwargs && kws_map["place"] != nullptr) {
409 410 411 412 413 414 415 416 417
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

L
LiYuRio 已提交
418 419 420 421 422 423 424 425 426 427 428 429
#ifdef PADDLE_WITH_DISTRIBUTE
std::shared_ptr<TensorDistAttr> ParseDistAttrArgs(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
  std::shared_ptr<TensorDistAttr> dist_attr = nullptr;
  if (kw_order_map["dist_attr"] <= args_num) {
    dist_attr = CastPyArg2DistAttr(
        PyTuple_GET_ITEM(args, kw_order_map["dist_attr"] - 1),
        kw_order_map["dist_attr"] - 1);
430
  } else if (flag_kwargs && kws_map["dist_attr"] != nullptr) {
L
LiYuRio 已提交
431 432 433 434 435 436
    dist_attr = CastPyArg2DistAttr(kws_map["dist_attr"], 0);
  }
  return dist_attr;
}
#endif

437
// boolean arguments: zero_copy, stop_gradient, persistable
438 439 440
int ParseBooleanArgs(std::string key,
                     std::unordered_map<std::string, PyObject*> kws_map,
                     std::unordered_map<std::string, Py_ssize_t> kw_order_map,
441 442 443
                     PyObject* args,
                     bool flag_kwargs,
                     Py_ssize_t args_num) {
444
  int res = -1;
445 446

  if (kw_order_map[key] <= args_num) {
447 448
    res = static_cast<int>(CastPyArg2AttrBoolean(
        PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1));
449
  } else {
450
    if (flag_kwargs && kws_map[key] != nullptr) {
451
      res = static_cast<int>(CastPyArg2AttrBoolean(kws_map[key], 0));
452 453 454 455 456 457 458
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
459 460 461
                      PyObject* args,
                      bool flag_kwargs,
                      Py_ssize_t args_num,
J
Jack Zhou 已提交
462
                      std::string unique_name_prefix = "generated_tensor") {
463 464 465 466 467
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
J
Jack Zhou 已提交
468
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
469 470 471 472 473
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
474
      if ((kws_map["name"] == nullptr) || (kws_map["name"] == Py_None)) {
475
        act_name =
J
Jack Zhou 已提交
476
            egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
477 478 479 480 481
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
J
Jack Zhou 已提交
482
          egr::Controller::Instance().GenerateUniqueName(unique_name_prefix);
483 484 485 486 487
    }
  }
  return act_name;
}

488
// initialize Tensor by PyArray(first argument is PyArray,
489
// mix args and kwargs) automatically.
490 491
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
492 493
                             PyObject* args,
                             bool flag_kwargs,
494 495 496
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
497 498 499 500
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
L
LiYuRio 已提交
501 502 503 504 505 506 507
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"place", 2},
                                                           {"persistable", 3},
                                                           {"zero_copy", 4},
                                                           {"name", 5},
                                                           {"stop_gradient", 6},
                                                           {"dist_attr", 7}};
508 509 510 511 512 513 514

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
515
  int stop_gradient = -1;
516 517 518 519

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
520 521 522 523 524 525 526 527
  persistable =
      (1 ==
       ParseBooleanArgs(
           "persistable", kws_map, kw_order_map, args, flag_kwargs, args_num));
  zero_copy =
      (1 ==
       ParseBooleanArgs(
           "zero_copy", kws_map, kw_order_map, args, flag_kwargs, args_num));
528
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
529 530
  stop_gradient = ParseBooleanArgs(
      "stop_gradient", kws_map, kw_order_map, args, flag_kwargs, args_num);
531

L
LiYuRio 已提交
532 533 534 535 536 537 538 539 540 541 542 543
#ifdef PADDLE_WITH_DISTRIBUTE
  std::shared_ptr<TensorDistAttr> dist_attr =
      ParseDistAttrArgs(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (dist_attr) {
    EmptyDistTensorInitializer(
        py_tensor_ptr, act_name, place, dist_attr, persistable, stop_gradient);
    InitDistTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
    return;
  }
#endif

544 545
  EmptyTensorInitializer(
      py_tensor_ptr, act_name, place, persistable, stop_gradient);
546
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy);
547 548
}

549
// initialize Tensor by Tensor or phi::DenseTensor (mix args and
550
// kwargs) automatically.
551 552
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
553 554
                            PyObject* args,
                            bool flag_kwargs,
555 556 557
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
558
  // framework Tensor,
559
  // there are 3 arguments to construct the new Tensor,
560 561 562 563 564
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
L
LiYuRio 已提交
565
      {"value", 1}, {"place", 2}, {"name", 3}, {"dist_attr", 4}};
566 567 568 569 570 571 572 573

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

L
LiYuRio 已提交
574 575 576 577 578
#ifdef PADDLE_WITH_DISTRIBUTE
  std::shared_ptr<TensorDistAttr> dist_attr =
      ParseDistAttrArgs(kws_map, kw_order_map, args, flag_kwargs, args_num);
#endif

579
  if (init_by_egr_tensor) {
580
    paddle::Tensor src_tensor;
581
    if (kw_order_map["value"] <= args_num) {
582 583 584
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
585
    } else {
586
      if (flag_kwargs && kws_map["value"] != nullptr) {
587
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
588 589
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
590 591
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
592 593 594 595 596
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
L
LiYuRio 已提交
597 598 599 600 601 602 603 604
#ifdef PADDLE_WITH_DISTRIBUTE
    if (dist_attr) {
      InitDistTensorWithTensor(
          py_tensor_ptr, src_tensor, place, act_name, dist_attr);
    } else {
      InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
    }
#else
605
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
L
LiYuRio 已提交
606
#endif
607 608
  } else {
    // init by framework tensor
609
    phi::DenseTensor src_tensor;
610 611 612 613 614
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
615
      if (flag_kwargs && kws_map["value"] != nullptr) {
616 617 618
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
619 620
            "The first expected arguments is {value: phi::DenseTensor}, "
            "but could not parse the first argument {value: phi::DenseTensor} "
621 622 623 624 625
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
626
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
627 628 629
  }
}

J
Jack Zhou 已提交
630 631
void AutoInitStringTensorByPyArray(
    TensorObject* py_tensor_ptr,
632 633 634 635
    std::unordered_map<std::string, PyObject*> kws_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
J
Jack Zhou 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
  // The first argument of the StringTensor constructor is PyArray,
  // there are 4 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};
  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
651 652 653 654 655
  act_name = ParseName(kws_map,
                       kw_order_map,
                       args,
                       flag_kwargs,
                       args_num,
J
Jack Zhou 已提交
656 657 658 659 660 661 662
                       "generated_string_tensor");
  EmptyStringTensorInitializer(py_tensor_ptr, act_name, place);
  InitStringTensorWithNumpyValue(py_tensor_ptr, numpy_value);
}

void AutoInitStringTensorByStringTensor(
    TensorObject* py_tensor_ptr,
663 664 665 666
    std::unordered_map<std::string, PyObject*> kws_map,
    PyObject* args,
    bool flag_kwargs,
    Py_ssize_t args_num) {
J
Jack Zhou 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679
  // The first argument of the Tensor constructor is StringTensor,
  // there are 3 arguments to construct the new StringTensor,
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"value", 1},
                                                           {"name", 2}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

680 681 682 683 684
  act_name = ParseName(kws_map,
                       kw_order_map,
                       args,
                       flag_kwargs,
                       args_num,
J
Jack Zhou 已提交
685
                       "generated_string_tensor");
686
  paddle::Tensor src_tensor;
J
Jack Zhou 已提交
687 688 689 690 691
  if (kw_order_map["value"] <= args_num) {
    src_tensor =
        CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                         kw_order_map["value"] - 1);
  } else {
692
    if (flag_kwargs && kws_map["value"] != nullptr) {
J
Jack Zhou 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705
      src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected kwargs is {value: Tensor}, "
          "but could not parse the first argument {value: Tensor} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  InitStringTensorWithStringTensor(py_tensor_ptr, src_tensor, place, act_name);
}

706
PyDoc_STRVAR(  // NOLINT
W
wanghuancoder 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719
    TensorDoc,
    R"DOC(Tensor($self, /, value, place, persistable, zero_copy, name, stop_gradient, dims, dtype, type)
--

Tensor is the basic data structure in PaddlePaddle. There are some ways to create a Tensor:

- Use the exsiting ``data`` to create a Tensor, please refer to :ref:`api_paddle_to_tensor`.
- Create a Tensor with a specified ``shape``, please refer to :ref:`api_paddle_ones`,
  :ref:`api_paddle_zeros`, :ref:`api_paddle_full`.
- Create a Tensor with the same ``shape`` and ``dtype`` as other Tensor, please refer to
  :ref:`api_paddle_ones_like`, :ref:`api_paddle_zeros_like`, :ref:`api_paddle_full_like`.
)DOC");

720
/** We should have init function with signature:
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
 * 1.
 * def __init__ ()
 * 2.
 * def __init__ (
 * ** dtype: paddle::framework::proto::VarType::Type,
 * ** dims: vector<int>,
 * ** name: std::string,
 * ** type: paddle::framework::proto::VarType::LodTensor,
 * ** persistable: bool)
 * 3. (multi-place)
 * (should have at least one parameter, one parameter equals to case 4, zero
 * parameter equals to case 1)
 * def __init__ (
 * ** value: ndarray,
 * ** place: paddle::platform::Place,
 * ** persistable: bool,
 * ** zero_copy: bool,
 * ** name: std::string,
L
LiYuRio 已提交
739
 * ** stop_gradient: bool,
740
 * ** dist_attr: phi::distributed::auto_parallel::TensorDistAttr)
741 742 743 744 745 746 747 748 749 750 751 752
 * 4.
 * def __init__ (
 * ** value: ndarray)
 * 5.
 * def __init__ (
 * ** tensor: Tensor)
 * 6. (multi-place)
 * (should have at least one parameter, one parameter equals to case 5, zero
 * parameter equals to case 1.)
 * def __init__ (
 * ** tensor: Tensor,
 * ** place: paddle::platform::Place,
L
LiYuRio 已提交
753
 * ** name: std::string,
754
 * ** dist_attr: phi::distributed::auto_parallel::TensorDistAttr)
755 756 757 758 759 760 761
 * 7. (multi-place) (should have at least one parameter, one parameter similar
 * to case 5, zero parameter equals to case 1.)
 * def __init__ (
 * ** tensor: FrameworkTensor,
 * ** place: paddle::platform::Place,
 * ** name: std::string)
 *  **/
762
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
0
0x45f 已提交
763
  EAGER_TRY
764 765 766 767 768
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
769 770 771 772 773 774 775 776 777 778 779
  PyObject* kw_zero_copy = nullptr;
  PyObject* kw_persistable = nullptr;
  PyObject* kw_stop_gradient = nullptr;

  PyObject* kw_value = nullptr;  // receive PyArray or Tensor
  PyObject* kw_place = nullptr;
  PyObject* kw_name = nullptr;
  PyObject* kw_dims = nullptr;
  PyObject* kw_dtype = nullptr;
  PyObject* kw_type = nullptr;
  PyObject* kw_dist_attr = nullptr;
780 781

  // the keywords argument
782
  static char* kwlist[] = {const_cast<char*>("value"),  // NOLINT
783 784 785 786 787 788 789 790
                           const_cast<char*>("place"),
                           const_cast<char*>("persistable"),
                           const_cast<char*>("zero_copy"),
                           const_cast<char*>("name"),
                           const_cast<char*>("stop_gradient"),
                           const_cast<char*>("dims"),
                           const_cast<char*>("dtype"),
                           const_cast<char*>("type"),
L
LiYuRio 已提交
791
                           const_cast<char*>("dist_attr"),
792
                           nullptr};
793 794 795 796 797 798 799

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
800 801
  bool flag_ = PyArg_ParseTupleAndKeywords(args,
                                           kwargs,
L
LiYuRio 已提交
802
                                           "|OOOOOOOOOO",
803 804 805 806 807 808 809 810 811
                                           kwlist,
                                           &kw_value,
                                           &kw_place,
                                           &kw_persistable,
                                           &kw_zero_copy,
                                           &kw_name,
                                           &kw_stop_gradient,
                                           &kw_dims,
                                           &kw_dtype,
L
LiYuRio 已提交
812 813
                                           &kw_type,
                                           &kw_dist_attr);
814 815 816 817 818 819 820 821 822 823 824

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
L
LiYuRio 已提交
825 826
      {"type", kw_type},
      {"dist_attr", kw_dist_attr}};
827

828 829
  PADDLE_ENFORCE_EQ(flag_,
                    true,
830 831 832 833 834 835
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
L
LiYuRio 已提交
836
                        "name, stop_gradient, dims, dtype, type, dist_attr)"));
837

838
  PADDLE_ENFORCE_NOT_NULL(
839 840 841 842 843
      self,
      paddle::platform::errors::Fatal(
          "Calling __init__ of Eager Tensor without __new__ is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it."));
844

845
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
846 847

  Py_ssize_t args_num = PyTuple_Size(args);
848 849 850 851 852
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
853 854
      // case 1
      VLOG(6) << "Calling case1's initializer.";
855
      EmptyTensorInitializer(
856 857 858 859
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
860
    } else {  // no position args, all arguments are kwargs
861
      if (kw_value != nullptr) {
862 863
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
864 865
          AutoInitTensorByPyArray(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
866
          return 0;
867
        } else if (PyObject_TypeCheck(kw_value, p_tensor_type)) {
868
          VLOG(6) << "Calling case5's or case6's initializer";
869 870
          AutoInitTensorByTensor(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
871
          return 0;
872
        } else if (PyObject_TypeCheck(kw_value, g_framework_tensor_pytype)) {
873
          VLOG(6) << "Calling case7's initializer.";
874 875 876 877
          AutoInitTensorByTensor(py_tensor_ptr,
                                 kws_map,
                                 args,
                                 flag_kwargs,
878 879
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
880
          return 0;
881
        } else {
882 883 884
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
885
              "or Tensor or phi::DenseTensor. "
886 887
              "Please check your input first and make sure you are on the "
              "right way."));
888
        }
889
      } else if (kw_dtype != nullptr &&
890
                 PyObject_TypeCheck(kw_dtype, g_vartype_pytype)) {
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

925
        std::string act_name = "";
926
        if (kw_name == Py_None) {
927 928 929
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
930
          act_name = CastPyArg2AttrString(kw_name, 0);
931
        }
932 933 934 935 936

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

937 938
        EmptyTensorInitializer(py_tensor_ptr,
                               act_name,
939 940
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
941 942 943 944
                               /* stop_gradient */ -1,
                               dtype,
                               dims,
                               var_type);
945

946
        return 0;
947 948
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
949
            "We not only support construct Tensor from numpy value "
950
            "or tensor(Tensor or phi::DenseTensor) "
951
            "with python kwargs by this initializer, "
952
            "but also even support dtype to init a empty Tensor. "
953 954
            "Please check your input first and make sure you call the existed "
            "constructor."));
955
      }
956 957 958
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
C
co63oc 已提交
959
    // 1 to 3 position args, remaining arguments are kwargs
960 961 962
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
963 964
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
965
      return 0;
966
    } else if (PyObject_TypeCheck(arg0_ptr, p_tensor_type)) {
967
      VLOG(6) << "Calling case5's or case6's initializer.";
968 969
      AutoInitTensorByTensor(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
970
      return 0;
971
    } else if (PyObject_TypeCheck(arg0_ptr, g_framework_tensor_pytype)) {
972
      VLOG(6) << "Calling case7's initializer.";
973 974 975 976
      AutoInitTensorByTensor(py_tensor_ptr,
                             kws_map,
                             args,
                             flag_kwargs,
977 978
                             args_num,
                             /* false means not init by egr tensor*/ false);
979 980 981
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
982
          "We support construct Tensor from numpy value "
983
          "or tensor(Tensor or phi::DenseTensor) "
984
          "with python args and kwargs by this initializer, "
985
          "but the first argument should be PyArray or Tensor or "
986
          "phi::DenseTensor. "
987 988
          "Please check your input first and make sure you call the existed "
          "constructor."));
989
    }
990
  } else if (args_num == (Py_ssize_t)4) {
C
co63oc 已提交
991
    // 4 position args, remaining arguments are kwargs
992 993 994
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
995 996
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
997
      return 0;
998 999 1000
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
C
co63oc 已提交
1001
          "there are 4 position args and remaining arguments arg kwargs,"
1002 1003 1004
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
1005
    }
1006 1007
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
1008
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
1009
      if (PyObject_TypeCheck(arg0_ptr, g_vartype_pytype)) {
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
1026 1027
        EmptyTensorInitializer(py_tensor_ptr,
                               act_name,
1028
                               egr::Controller::Instance().GetExpectedPlace(),
1029 1030 1031 1032 1033
                               persistable,
                               -1,
                               dtype,
                               dims,
                               var_type);
1034
        return 0;
1035 1036
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
1037 1038
        AutoInitTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
1039 1040 1041
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
1042 1043 1044 1045 1046
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
1047
      }
C
co63oc 已提交
1048
    } else {  // five position args, remaining arguments are kwargs
1049
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
1050 1051
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
1052 1053
        AutoInitTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
1054
        return 0;
1055
      } else {
1056 1057
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
C
co63oc 已提交
1058
            "there are 5 position args and remaining arguments are kwargs,"
1059 1060 1061
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
1062 1063
      }
    }
1064 1065 1066 1067
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
1068 1069
      AutoInitTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
1070
      return 0;
C
co63oc 已提交
1071
    } else {  // six position args, remaining arguments are kwargs, but this
1072 1073 1074
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
C
co63oc 已提交
1075
          "there are 6 position args and the remaining arguments are kwargs. "
1076 1077
          "Please check your code and make sure the first position args is "
          "PyArray."));
1078
    }
1079 1080 1081 1082
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
1083
  }
1084

0
0x45f 已提交
1085 1086
  return -1;
  EAGER_CATCH_AND_THROW_RETURN_NEG
1087 1088
}

J
Jack Zhou 已提交
1089
/** We should have init function with signature:
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
 * 1.
 * def __init__ ()
 *
 * 2.
 * def __init__ (
 * ** dims: vector<int>,
 * ** name: std::string)
 *
 * 3.
 * (should have at least one parameter, one parameter equals to case 4, zero
 * parameter equals to case 1)
 * def __init__ (
 * ** value: ndarray,
 * ** zero_copy: bool,
 * ** name: std::string)
 *
 * 4.
 * def __init__ (
 * ** value: ndarray)
 *
 * 5.
 * def __init__ (
 * ** tensor: Tensor)
 *
 * 6.
 * (should have at least one parameter, one parameter equals to case 5, zero
 * parameter equals to case 1.)
 * def __init__ (
 * ** tensor: Tensor,
 * ** name: std::string)
 * **/
J
Jack Zhou 已提交
1121 1122 1123 1124 1125 1126
int StringTensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
1127
  PyObject* kw_zero_copy = nullptr;
J
Jack Zhou 已提交
1128

1129 1130 1131
  PyObject* kw_value = nullptr;  // receive PyArray or Tensor
  PyObject* kw_name = nullptr;
  PyObject* kw_dims = nullptr;
J
Jack Zhou 已提交
1132 1133

  // the keywords argument
1134
  static char* kwlist[] = {const_cast<char*>("value"),  // NOLINT
1135 1136 1137
                           const_cast<char*>("zero_copy"),
                           const_cast<char*>("name"),
                           const_cast<char*>("dims"),
1138
                           nullptr};
J
Jack Zhou 已提交
1139 1140 1141 1142 1143 1144
  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case1, case2, case3, case4, case 5, case 6.
1145 1146 1147 1148 1149 1150 1151 1152
  bool flag_ = PyArg_ParseTupleAndKeywords(args,
                                           kwargs,
                                           "|OOOO",
                                           kwlist,
                                           &kw_value,
                                           &kw_zero_copy,
                                           &kw_name,
                                           &kw_dims);
J
Jack Zhou 已提交
1153 1154 1155 1156 1157 1158 1159 1160

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"dims", kw_dims}};

1161 1162
  PADDLE_ENFORCE_EQ(flag_,
                    true,
J
Jack Zhou 已提交
1163 1164 1165 1166 1167 1168 1169 1170
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, zero_copy, name, dims)"));

  PADDLE_ENFORCE_NOT_NULL(
1171 1172 1173 1174 1175
      self,
      paddle::platform::errors::Fatal(
          "Calling __init__ of Eager Tensor without __new__ is "
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it."));
J
Jack Zhou 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);

  Py_ssize_t args_num = PyTuple_Size(args);
  VLOG(6) << " args_num: " << args_num;
  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
      // case 1
      VLOG(6) << "Calling case1's string initializer.";
      EmptyStringTensorInitializer(
1187 1188 1189
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor"),
J
Jack Zhou 已提交
1190 1191 1192
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
    } else {
1193
      if (kw_value != nullptr) {
J
Jack Zhou 已提交
1194 1195
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's string initializer";
1196 1197
          AutoInitStringTensorByPyArray(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1198
          return 0;
1199
        } else if (PyObject_TypeCheck(kw_value, p_string_tensor_type)) {
J
Jack Zhou 已提交
1200
          VLOG(6) << "Calling case5's or case6's string initializer";
1201 1202
          AutoInitStringTensorByStringTensor(
              py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211
          return 0;
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
              "or StringTensor."
              "Please check your input first and make sure you are on the "
              "right way."));
        }
1212
      } else if (kw_dims != nullptr) {
J
Jack Zhou 已提交
1213 1214 1215 1216 1217
        VLOG(6) << "Calling case2's string initializer.";
        std::unordered_map<std::string, Py_ssize_t> kw_order_map{{"dims", 1},
                                                                 {"name", 2}};

        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);
1218 1219 1220 1221 1222 1223
        std::string act_name = ParseName(kws_map,
                                         kw_order_map,
                                         args,
                                         flag_kwargs,
                                         args_num,
                                         "generated_string_tensor");
J
Jack Zhou 已提交
1224
        EmptyStringTensorInitializer(
1225 1226 1227 1228
            py_tensor_ptr,
            act_name,
            egr::Controller::Instance().GetExpectedPlace(),
            dims);
J
Jack Zhou 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "We not only support construct Tensor from numpy value "
            "or StringTensor with python kwargs by this initializer, "
            "but also even support dtype to init a empty StringTensor. "
            "Please check your input first and make sure you call the existed "
            "constructor."));
      }
    }
  } else if (args_num == (Py_ssize_t)1) {  // case 3 ~ 6
C
co63oc 已提交
1240
    // 1 position args, remaining arguments are kwargs
J
Jack Zhou 已提交
1241 1242 1243
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's string initializer.";
1244 1245
      AutoInitStringTensorByPyArray(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1246
      return 0;
1247
    } else if (PyObject_TypeCheck(arg0_ptr, p_string_tensor_type)) {
J
Jack Zhou 已提交
1248
      VLOG(6) << "Calling case5's or case6's string initializer.";
1249 1250
      AutoInitStringTensorByStringTensor(
          py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Could not parse the first keyword argument successfully, "
          "the first keyword argument is value, but it should be PyArray "
          "or StringTensor."
          "Please check your input first and make sure you are on the "
          "right way."));
    }
  } else if (args_num == (Py_ssize_t)2) {  // case 2
    // 2 position args
    if (!flag_kwargs) {
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
1264
      if (PyObject_TypeCheck(arg0_ptr, p_string_tensor_type)) {
J
Jack Zhou 已提交
1265
        VLOG(6) << "Calling case6's string initializer.";
1266 1267
        AutoInitStringTensorByStringTensor(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1268 1269 1270
        return 0;
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's string initializer.";
1271 1272
        AutoInitStringTensorByPyArray(
            py_tensor_ptr, kws_map, args, flag_kwargs, args_num);
J
Jack Zhou 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        return 0;
      } else {
        VLOG(6) << "Calling case2's string initializer.";
        std::vector<int> dims = CastPyArg2VectorOfInt(arg0_ptr, 0);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 1);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_string_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
        }
        EmptyStringTensorInitializer(
1286 1287 1288 1289
            py_tensor_ptr,
            act_name,
            egr::Controller::Instance().GetExpectedPlace(),
            dims);
J
Jack Zhou 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        return 0;
      }
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "Can't not find expected num of args, please check your call, and "
          "make sure u call the existed constructor."));
    }
  }
  return 1;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
void AddPyMethodDefs(std::vector<PyMethodDef>* vector, PyMethodDef* methods) {
  if (!vector->empty()) {
    // remove nullptr terminator
    vector->pop_back();
  }
  while (true) {
    vector->push_back(*methods);
    if (!methods->ml_name) {
      break;
    }
    methods++;
  }
}

1315
static void TensorDealloc(TensorObject* self) {
1316
  if (self->weakrefs != nullptr)
1317
    PyObject_ClearWeakRefs(reinterpret_cast<PyObject*>(self));
1318
  self->tensor.~Tensor();
1319 1320 1321
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

1322 1323
extern struct PyGetSetDef variable_properties[];                // NOLINT
extern struct PyGetSetDef string_tensor_variable_properties[];  // NOLINT
1324

1325 1326 1327
extern PyMethodDef variable_methods[];                // NOLINT
extern PyMethodDef math_op_patch_methods[];           // NOLINT
extern PyMethodDef string_tensor_variable_methods[];  // NOLINT
1328

W
wanghuancoder 已提交
1329 1330 1331 1332
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

1333 1334 1335
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

1336 1337 1338 1339
  static std::vector<PyMethodDef> methods;
  AddPyMethodDefs(&methods, variable_methods);
  AddPyMethodDefs(&methods, math_op_patch_methods);

1340
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
1341
      PyType_Type.tp_alloc(&PyType_Type, 0));
1342 1343
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
1344
  auto type = &heap_type->ht_type;
1345
  type->tp_name = "Tensor";
1346
  type->tp_basicsize = sizeof(TensorObject);
1347
  type->tp_dealloc = (destructor)TensorDealloc;
1348 1349 1350
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
1351
  type->tp_methods = methods.data();
1352
  type->tp_getset = variable_properties;
1353 1354
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
W
wanghuancoder 已提交
1355
  type->tp_doc = TensorDoc;
1356
  type->tp_weaklistoffset = offsetof(TensorObject, weakrefs);
1357 1358
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
1359 1360 1361 1362 1363
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
1364
  p_tensor_type = type;
1365 1366

  if (PyType_Ready(type) < 0) {
1367
    PADDLE_THROW(platform::errors::Fatal(
1368
        "Init Paddle error in BindEager(PyType_Ready)."));
1369 1370 1371
    return;
  }

1372
  Py_INCREF(type);
1373 1374
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
1375
    Py_DECREF(type);
1376 1377
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
1378
        "Init Paddle error in BindEager(PyModule_AddObject)."));
1379 1380 1381 1382
    return;
  }

  BindFunctions(m.ptr());
W
wanghuancoder 已提交
1383
  BindEagerPyLayer(m.ptr());
1384
  BindEagerOpFunctions(&m);
1385 1386
}

J
Jack Zhou 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
void BindEagerStringTensor(pybind11::module* module) {
  auto m = module->def_submodule("eager");

  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("StringTensor");
  heap_type->ht_qualname = ToPyObject("StringTensor");
  auto type = &heap_type->ht_type;
  type->tp_name = "StringTensor";
  type->tp_basicsize = sizeof(TensorObject);
  type->tp_dealloc = (destructor)TensorDealloc;
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = string_tensor_variable_methods;
  type->tp_getset = string_tensor_variable_properties;
  type->tp_init = StringTensorInit;
  type->tp_new = TensorNew;
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_string_tensor_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
1421 1422
  if (PyModule_AddObject(
          m.ptr(), "StringTensor", reinterpret_cast<PyObject*>(type)) < 0) {
J
Jack Zhou 已提交
1423 1424 1425 1426 1427 1428 1429 1430
    Py_DECREF(type);
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEagerStringTensor(PyModule_AddObject)."));
    return;
  }
}

1431 1432
}  // namespace pybind
}  // namespace paddle