nn.py 321.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
C
chengduozh 已提交
172 173
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
174
    'lstm',
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
184
       is_test=False,
185
       name=None):
Y
Yu Yang 已提交
186
    """
187
    **Fully Connected Layer**
Y
Yu Yang 已提交
188

189 190 191 192 193 194 195 196
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
197
    to the output as well.
C
caoying03 已提交
198

C
caoying03 已提交
199
    This process can be formulated as follows:
200 201 202

    .. math::

203
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
204 205 206

    In the above equation:

C
caoying03 已提交
207 208 209 210
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
211
    * :math:`Act`: The activation function.
C
caoying03 已提交
212
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
213 214

    Args:
R
ranqiu 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
230 231
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
232
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
233
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
234
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
235

236
    Returns:
F
fengjiayi 已提交
237
        Variable: The transformation result.
238 239

    Raises:
C
caoying03 已提交
240
        ValueError: If rank of the input tensor is less than 2.
241 242 243 244

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
245
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
246
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
247
    """
C
caoying03 已提交
248

C
caoying03 已提交
249
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
250 251 252 253

    dtype = helper.input_dtype()

    mul_results = []
254 255
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
256 257 258
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
259

Y
Yu Yang 已提交
260
        w = helper.create_parameter(
261
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
262
        tmp = helper.create_variable_for_type_inference(dtype)
263
        helper.append_op(
264 265 266
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
267
            outputs={"Out": tmp},
M
mozga-intel 已提交
268 269
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
270 271 272 273
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
274
    else:
X
Xin Pan 已提交
275
        pre_bias = helper.create_variable_for_type_inference(dtype)
276
        helper.append_op(
277 278 279
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
280
            attrs={"use_mkldnn": False})
281 282 283 284
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
285 286


287 288 289
def embedding(input,
              size,
              is_sparse=False,
290
              is_distributed=False,
291 292 293
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
294
    """
295 296
    **Embedding Layer**

297
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
298 299
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
300 301 302

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
303 304

    Args:
305 306 307 308 309
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
310
        is_distributed(bool): Whether to run lookup table from remote parameter server.
311 312
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
313
            with zeros whenever lookup encounters it in :attr:`input`. If
314
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
315 316
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
317
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
318

319 320 321
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
322

323 324
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
325

C
chengduoZH 已提交
326
          dict_size = len(dataset.ids)
327
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
328
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
329 330 331
    """

    helper = LayerHelper('embedding', **locals())
332 333 334 335 336
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
337 338
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
339
    tmp = helper.create_variable_for_type_inference(dtype)
340 341
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
342 343 344 345 346
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
347 348 349
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
350
            'remote_prefetch': remote_prefetch,
351 352
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
353 354 355
    return tmp


W
wopeizl 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
372

W
wopeizl 已提交
373 374 375 376 377 378 379 380 381 382 383
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
384

W
wopeizl 已提交
385 386 387 388
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
389

W
wopeizl 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
476 477


P
phlrain 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
         dropout_prob=0.0,
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
    """
    If Device is GPU, This op will use cudnn LSTM implementation

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed


    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
640 641 642 643 644 645 646 647 648 649 650
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
651 652
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
653 654 655
    """
    **Dynamic LSTMP Layer**

656 657 658 659 660 661
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
662 663 664 665 666

    The formula is as follows:

    .. math::

667
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
668

669
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
670

671
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
672

673
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
674

675
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
676

677
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
678

679
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
680

Y
Yibing Liu 已提交
681 682 683 684 685 686
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
687
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
688
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
689
          bias vector).
Y
Yibing Liu 已提交
690 691 692
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
693
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
694
    * :math:`h`: The hidden state.
695
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
696 697
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
698
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
699
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
700
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
701 702
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
703 704 705 706

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
707

Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717 718 719
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
720
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
721 722
                               hidden-hidden weight and projection weight.

723 724
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
725 726
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
727 728
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
729
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
730 731 732 733 734

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
735
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
736 737 738 739 740 741
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
742
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
743 744 745
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
746
                                - The shape is (1 x 7D).
C
chengduo 已提交
747 748 749 750 751

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
752 753 754 755 756 757 758 759 760
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
761
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
762 763
                              default "tanh".
        proj_activation(str): The activation for projection output.
764
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
765 766
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
767 768
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
769 770

    Returns:
771 772 773 774
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
775 776

    Examples:
777

Y
Yibing Liu 已提交
778 779
        .. code-block:: python

780 781 782 783
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
784
            hidden_dim, proj_dim = 512, 256
785
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
786
                                     act=None, bias_attr=None)
787 788 789
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
790 791 792 793
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
794
    """
795

C
chengduo 已提交
796
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
797
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
798
    size = size // 4
Y
Yibing Liu 已提交
799 800 801 802 803 804 805 806 807 808
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
809 810 811 812 813 814
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
843 844 845 846 847 848 849 850 851
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
852
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
853

854
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
855
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
856

G
guosheng 已提交
857 858 859 860 861 862 863 864 865
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
866

G
guosheng 已提交
867
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
868

G
guosheng 已提交
869
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
870 871
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
872 873 874 875
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
876
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
877 878

    Args:
879 880
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
881
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
882
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
883 884
            is the hidden size.
        size(int): The dimension of the gru cell.
885
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
886 887
            hidden-hidden weight matrix. Note:

888
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
889
              :math:`D` is the hidden size.
890
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
891
              The first part are weights of the update gate and reset gate with
892
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
893
              candidate hidden state with shape :math:`(D \\times D)`.
894 895 896 897 898

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
899
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
900
            the bias in the update gate, reset gate and candidate calculations.
901 902 903
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
904 905
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
906
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
907 908 909
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
910
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
911
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
912 913 914 915
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
916 917

    Returns:
G
guosheng 已提交
918
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
919
            and sequence length is the same with the input.
920

G
guosheng 已提交
921
    Examples:
922

G
guosheng 已提交
923 924
        .. code-block:: python

925 926 927 928
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
929
            hidden_dim = 512
930
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
931 932 933 934 935 936 937 938 939 940
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
941
    batch_size = input.shape[0]
G
guosheng 已提交
942
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
943
    if h_0:
G
guosheng 已提交
944
        assert h_0.shape == (
Y
Yancey 已提交
945 946 947
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
948

X
Xin Pan 已提交
949 950 951 952
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
971 972 973
def gru_unit(input,
             hidden,
             size,
974 975
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
976
             activation='tanh',
977
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
978
    """
979
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
980

981 982
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
983

984
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
985

986
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
987

988
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
989 990

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
991 992 993
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
994 995
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

996 997
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
998 999 1000
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1001 1002 1003

    Args:
        input (Variable): The fc transformed input value of current step.
1004
        hidden (Variable): The hidden value of gru unit from previous step.
1005
        size (integer): The input dimension value.
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1020
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1021
            the bias in the update gate, reset gate and candidate calculations.
1022 1023 1024
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1025 1026
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1027 1028 1029 1030
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1031

1032 1033 1034 1035 1036 1037
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1038

1039
             # assuming we have x_t_data and prev_hidden of size=10
1040
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1041 1042
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1055
    size = size // 3
Y
Yu Yang 已提交
1056 1057

    # create weight
1058 1059
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1060

X
Xin Pan 已提交
1061 1062 1063
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1064
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1065
    # create bias
1066
    if helper.bias_attr:
Y
Yu Yang 已提交
1067 1068 1069
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1070
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1071 1072 1073

    helper.append_op(
        type='gru_unit',
1074
        inputs=inputs,
Y
Yu Yang 已提交
1075 1076 1077 1078 1079 1080
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1081 1082
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1083 1084 1085 1086 1087
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1088
@templatedoc()
1089
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1090 1091 1092 1093 1094 1095 1096
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1097
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1098 1099 1100 1101
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1102 1103 1104
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1105 1106

    """
Y
Yu Yang 已提交
1107 1108 1109 1110 1111 1112
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1113 1114 1115 1116 1117 1118 1119 1120
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1136 1137 1138 1139
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1140

W
wopeizl 已提交
1141 1142
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1143

W
wopeizl 已提交
1144
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1145

W
wopeizl 已提交
1146
        label(${label_type}): ${label_comment}
1147

W
wopeizl 已提交
1148 1149
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1150

W
wopeizl 已提交
1151 1152
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1153

W
wopeizl 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1164
                "Transition": transition,
W
wopeizl 已提交
1165 1166
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1167

W
wopeizl 已提交
1168
    return viterbi_path
Y
Yu Yang 已提交
1169 1170


Y
yi.wu 已提交
1171
@templatedoc()
F
fengjiayi 已提交
1172
def cos_sim(X, Y):
Y
Yu Yang 已提交
1173
    """
Y
yi.wu 已提交
1174 1175 1176
    ${comment}

    Args:
1177 1178
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1179

Y
yi.wu 已提交
1180
    Returns:
1181
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1182
    """
F
fengjiayi 已提交
1183
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1184 1185 1186
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1197 1198 1199 1200 1201
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1202
            dropout_implementation="downgrade_in_infer"):
1203 1204 1205 1206 1207
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1208
    training. The dropout operator randomly sets (according to the given dropout
1209 1210 1211 1212
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1213 1214
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1215 1216 1217 1218 1219 1220 1221
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1233
                                           dropout op can be removed from the program.
P
phlrain 已提交
1234
                                           the program will be efficient
1235

P
phlrain 已提交
1236

1237 1238

    Returns:
1239
        Variable: A tensor variable is the shape with `x`.
1240 1241

    Examples:
1242

1243 1244
        .. code-block:: python

1245 1246
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1247 1248
    """

F
fengjiayi 已提交
1249
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1250 1251 1252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1253 1254 1255 1256

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1257 1258 1259 1260 1261
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1262 1263 1264 1265
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1266 1267
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1268
        })
1269 1270 1271
    return out


1272
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1273
    """
Y
Yibing Liu 已提交
1274 1275
    **Cross Entropy Layer**

1276 1277 1278
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1279 1280

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1281
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1282

Y
Yibing Liu 已提交
1283
        .. math::
Y
yangyaming 已提交
1284

Y
Yibing Liu 已提交
1285 1286 1287
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1288 1289
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1290 1291 1292 1293 1294

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1295
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1296 1297 1298
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1299 1300
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1301
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1302

Y
Yibing Liu 已提交
1303
    Args:
Y
yangyaming 已提交
1304
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1305 1306 1307 1308
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1309
        label (Variable|list): the ground truth which is a 2-D tensor. When
1310 1311 1312 1313
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1314
        soft_label (bool): a flag indicating whether to
1315
                                           interpretate the given labels as soft
1316
                                           labels. Default: `False`.
M
minqiyang 已提交
1317 1318
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1319
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1320 1321 1322 1323 1324

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1325 1326 1327 1328 1329
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1330 1331 1332 1333 1334 1335

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1336
    """
F
fengjiayi 已提交
1337
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1338
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1339 1340 1341 1342 1343
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1344 1345
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1346 1347 1348
    return out


F
fengjiayi 已提交
1349
def square_error_cost(input, label):
Y
Yu Yang 已提交
1350
    """
1351 1352
    **Square error cost layer**

1353 1354
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1369 1370
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1371 1372

    Returns:
G
guosheng 已提交
1373
        Variable: The tensor variable storing the element-wise squared error \
1374
                  difference of input and label.
1375 1376 1377 1378 1379 1380 1381 1382

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1383
    """
F
fengjiayi 已提交
1384
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1385
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1392
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1393
    helper.append_op(
F
fengjiayi 已提交
1394 1395
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1396 1397 1398
    return square_out


Y
yi.wu 已提交
1399
@templatedoc()
Y
Yu Yang 已提交
1400 1401 1402 1403
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1404
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1405
    """
Y
yi.wu 已提交
1406
    **Chunk Evaluator**
Y
yi.wu 已提交
1407

Y
yangyaming 已提交
1408
    This function computes and outputs the precision, recall and
1409
    F1-score of chunk detection.
Y
yi.wu 已提交
1410

Y
yi.wu 已提交
1411 1412 1413 1414 1415 1416 1417 1418
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1419

Y
yi.wu 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1445

Y
yi.wu 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1470
    Args:
1471 1472 1473 1474 1475
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1476

Y
yi.wu 已提交
1477
    Returns:
Y
update  
yi.wu 已提交
1478 1479 1480
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1481

Y
yi.wu 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1494
    """
F
fengjiayi 已提交
1495
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1496 1497

    # prepare output
X
Xin Pan 已提交
1498 1499 1500 1501 1502 1503 1504
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1505 1506 1507 1508 1509 1510 1511 1512

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1513 1514 1515 1516
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1517 1518 1519
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1520 1521
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1522
        })
1523 1524
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1525 1526


1527
@templatedoc()
Y
Yu Yang 已提交
1528 1529 1530 1531 1532 1533 1534
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1535 1536
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1537 1538 1539 1540
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1541 1542 1543 1544 1545 1546 1547

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1561

1562 1563
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1564 1565 1566 1567 1568 1569 1570
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1571
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1582
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1583 1584 1585 1586 1587 1588
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1589
def sequence_softmax(input, use_cudnn=False, name=None):
1590 1591 1592
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1593
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1610 1611 1612
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1625 1626
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1627
    softmax_out = helper.create_variable_for_type_inference(dtype)
1628 1629 1630 1631 1632 1633 1634 1635
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1636
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1637
    """
1638
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1639
    has the same shape as the input.
Q
qiaolongfei 已提交
1640

1641 1642 1643 1644 1645 1646
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1647
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1648 1649 1650 1651 1652 1653 1654

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1655
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1656 1657 1658 1659 1660 1661 1662 1663

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1664 1665 1666
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1679 1680
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1681
    softmax_out = helper.create_variable_for_type_inference(dtype)
1682 1683 1684 1685 1686 1687 1688 1689
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1690 1691 1692
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1693 1694
           stride=1,
           padding=0,
1695
           dilation=1,
Y
Yu Yang 已提交
1696 1697 1698
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1699
           use_cudnn=True,
1700 1701
           act=None,
           name=None):
Y
Yu Yang 已提交
1702
    """
C
chengduoZH 已提交
1703
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1704 1705
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1706
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1707 1708 1709 1710 1711 1712 1713
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1714 1715 1716
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1717

1718
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1719

C
chengduoZH 已提交
1720 1721
    .. math::

C
refine  
chengduoZH 已提交
1722
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1723

T
tensor-tang 已提交
1724
    Where:
C
chengduoZH 已提交
1725

1726 1727 1728 1729 1730
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1731
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1732 1733 1734

    Example:

1735 1736
        - Input:

W
weixing02 已提交
1737
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1738

W
weixing02 已提交
1739
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1740

1741
        - Output:
T
tensor-tang 已提交
1742

W
weixing02 已提交
1743
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1744

C
chengduoZH 已提交
1745
        Where
1746 1747

        .. math::
C
chengduoZH 已提交
1748

W
weixing02 已提交
1749 1750
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1751 1752

    Args:
1753
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1754
        num_filters(int): The number of filter. It is as same as the output
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1783 1784
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1785 1786
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1787
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1788
            will be named automatically. Default: None
C
chengduoZH 已提交
1789 1790

    Returns:
G
guosheng 已提交
1791
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1792 1793
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1794
    Raises:
1795 1796
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1797

C
chengduoZH 已提交
1798 1799 1800
    Examples:
        .. code-block:: python

1801 1802
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1803 1804 1805
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1806
    assert param_attr is not False, "param_attr should not be False here."
1807
    l_type = 'conv2d'
X
xzl 已提交
1808 1809
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1810
        l_type = 'depthwise_conv2d'
1811 1812 1813 1814

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1815 1816 1817 1818 1819
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1820
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1821

C
chengduoZH 已提交
1822 1823 1824
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1825
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1826

C
chengduoZH 已提交
1827 1828
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1829 1830

    input_shape = input.shape
M
minqiyang 已提交
1831
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1832 1833

    def _get_default_param_initializer():
C
chengduo 已提交
1834 1835
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1836 1837 1838 1839 1840 1841 1842 1843
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1844
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1860
    helper.append_op(
1861
        type=l_type,
Y
Yu Yang 已提交
1862 1863 1864 1865 1866
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1867 1868 1869
        attrs={
            'strides': stride,
            'paddings': padding,
1870
            'dilations': dilation,
C
chengduoZH 已提交
1871
            'groups': groups,
1872
            'use_cudnn': use_cudnn,
1873
            'use_mkldnn': False,
C
chengduoZH 已提交
1874
        })
Y
Yu Yang 已提交
1875 1876 1877 1878 1879 1880

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1898 1899 1900 1901 1902 1903
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1913 1914
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1915 1916 1917
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1918
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1944
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1945 1946
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1947
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1948 1949
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1950
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1951 1952
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1953
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1954 1955 1956 1957 1958 1959
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1970 1971
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1972 1973
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1974
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1975
            will be named automatically. Default: None.
C
chengduoZH 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1988 1989
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1990 1991 1992
    """

    l_type = 'conv3d'
C
chengduo 已提交
1993
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2004
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2018 2019 2020
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2029
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2044
            'use_mkldnn': False
C
chengduoZH 已提交
2045 2046
        })

2047
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2048 2049 2050 2051

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2052
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2053
    """
Y
yangyaming 已提交
2054 2055 2056
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2068
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2069 2070 2071 2072 2073
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2074
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2075 2076 2077 2078 2079 2080 2081

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2082 2083
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2084

L
Luo Tao 已提交
2085 2086
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2087
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2088
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2089
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2090 2091 2092 2093 2094 2095 2096

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2097

Y
yangyaming 已提交
2098
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2099 2100 2101 2102 2103
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2104 2105
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2106
    """
F
fengjiayi 已提交
2107
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2108
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2109 2110
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2111 2112 2113 2114 2115 2116

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2117 2118
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2119

Y
yangyaming 已提交
2120 2121 2122 2123 2124
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2125 2126 2127
    return pool_out


C
add doc  
chengduoZH 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2147
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2148 2149 2150 2151 2152
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2153
def sequence_first_step(input):
L
Luo Tao 已提交
2154
    """
L
Luo Tao 已提交
2155
    This function gets the first step of sequence.
L
Luo Tao 已提交
2156 2157 2158 2159

    .. code-block:: text

       x is a 1-level LoDTensor:
2160
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2161 2162 2163 2164 2165
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2166
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2167
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2168

L
Luo Tao 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2178

Y
yangyaming 已提交
2179
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2180 2181 2182
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2183 2184 2185
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2186
def sequence_last_step(input):
L
Luo Tao 已提交
2187
    """
L
Luo Tao 已提交
2188
    This function gets the last step of sequence.
L
Luo Tao 已提交
2189 2190 2191 2192

    .. code-block:: text

       x is a 1-level LoDTensor:
2193
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2194 2195 2196 2197 2198
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2199
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2200
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2201

L
Luo Tao 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2211

Y
yangyaming 已提交
2212
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2213 2214 2215
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2216 2217 2218
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2219 2220 2221 2222
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2223
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2224 2225 2226 2227 2228
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2229

Y
Yibing Liu 已提交
2230 2231
	- Case:

2232
            Given the input Variable **input**:
2233

2234 2235 2236
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2237

2238
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2239

2240
            the output Variable will be
2241

2242 2243 2244
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2245 2246

    NOTE: The first dimension size of **input**, **offset** and **length**
2247
          should be equal. The **offset** should start from 0.
2248

Y
Yibing Liu 已提交
2249
    Args:
2250
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2251
                         sequences.
Y
Yibing Liu 已提交
2252 2253 2254 2255 2256 2257
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2258
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2269
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2270 2271 2272 2273
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2274
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2289
@templatedoc()
Y
Yu Yang 已提交
2290
def pool2d(input,
C
chengduoZH 已提交
2291 2292
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2293 2294
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2295
           global_pooling=False,
C
chengduoZH 已提交
2296
           use_cudnn=True,
2297
           ceil_mode=False,
2298 2299
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2300
    """
F
fengjiayi 已提交
2301
    ${comment}
2302 2303

    Args:
2304 2305 2306
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2307
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2308
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2309 2310
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2311
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2312 2313 2314 2315 2316 2317
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2318 2319 2320
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2321
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2322
                        layer will be named automatically.
2323
        exclusive (bool): Whether to exclude padding points in average pooling
2324
                          mode, default is true
F
fengjiayi 已提交
2325

2326
    Returns:
F
fengjiayi 已提交
2327
        Variable: The pooling result.
F
fengjiayi 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2341 2342 2343 2344
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2345
                            global_pooling=False)
Y
Yu Yang 已提交
2346 2347 2348 2349 2350
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2351

C
chengduoZH 已提交
2352 2353 2354 2355 2356
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2357 2358 2359 2360
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2361 2362
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2363

C
Add doc  
chengduoZH 已提交
2364
    l_type = 'pool2d'
2365 2366

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2367
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2368
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2369 2370

    helper.append_op(
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2382 2383
            "use_mkldnn": False,
            "exclusive": exclusive,
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2397 2398
           name=None,
           exclusive=True):
2399 2400
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2401
    pooling configurations mentioned in input parameters.
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2414
        exclusive (bool): Whether to exclude padding points in average pooling
2415
                          mode, default is true
2416

2417
    Returns:
2418
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2419 2420 2421 2422 2423
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2424

C
chengduoZH 已提交
2425 2426 2427 2428 2429
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2430 2431 2432
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2433

C
chengduoZH 已提交
2434 2435
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2436

2437 2438
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2439
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2440
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2441 2442

    helper.append_op(
2443
        type=l_type,
Y
Yu Yang 已提交
2444 2445 2446 2447 2448 2449 2450
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2451
            "paddings": pool_padding,
2452
            "use_cudnn": use_cudnn,
2453
            "ceil_mode": ceil_mode,
2454 2455
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2468
               data_layout='NCHW',
Y
Yang Yang 已提交
2469
               in_place=False,
2470 2471
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2472
               moving_variance_name=None,
2473 2474
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2475
    """
Q
qiaolongfei 已提交
2476 2477 2478 2479
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2480

Q
qiaolongfei 已提交
2481
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2482

Q
qiaolongfei 已提交
2483 2484
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2485 2486 2487
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2500 2501

    Args:
Q
qiaolongfei 已提交
2502
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2503 2504 2505 2506
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2507 2508 2509 2510 2511 2512 2513 2514
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2515
        data_layout(string, default NCHW): NCHW|NHWC
2516
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2517 2518 2519 2520
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2521
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2522
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2523 2524

    Returns:
Q
qiaolongfei 已提交
2525
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2526 2527 2528 2529 2530 2531 2532

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2533
    """
C
chengduo 已提交
2534
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2557
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2558

2559 2560
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2561 2562 2563
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2564
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2565
        shape=param_shape,
2566 2567 2568 2569 2570 2571 2572
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2573
            trainable=False,
W
wanghaoshuang 已提交
2574
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2575
        shape=param_shape,
2576 2577
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2578 2579 2580 2581 2582 2583

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2584 2585 2586 2587
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2588

X
Xin Pan 已提交
2589 2590
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2608 2609 2610 2611
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2612
            "use_mkldnn": False,
2613
            "fuse_with_relu": fuse_with_relu
2614
        })
Y
Yu Yang 已提交
2615 2616 2617 2618

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2619
@templatedoc()
G
guosheng 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2630
    ${comment}
G
guosheng 已提交
2631 2632 2633

    The formula is as follows:

Y
yuyang18 已提交
2634
    ..  math::
G
guosheng 已提交
2635 2636 2637 2638 2639 2640 2641

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2642 2643 2644 2645 2646 2647 2648 2649
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2650

G
guosheng 已提交
2651 2652
    Args:
        input(Variable): The input tensor variable.
2653
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2654
            normalization. Default True.
2655
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2656 2657
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2658
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2659
            Default 1.
2660
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2661
            division by zero. Default 1e-05.
G
guosheng 已提交
2662
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2663 2664
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2665 2666
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2667
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2668 2669
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2670
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2671
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2672
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2673 2674 2675
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2676 2677

    Returns:
Y
yuyang18 已提交
2678
        ${y_comment}
G
guosheng 已提交
2679 2680 2681

    Examples:

Y
yuyang18 已提交
2682 2683 2684
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2700
    if shift:
G
guosheng 已提交
2701 2702 2703 2704 2705 2706
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2707 2708 2709 2710 2711
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2805 2806 2807 2808
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2809 2810 2811
                     padding=0,
                     stride=1,
                     dilation=1,
2812
                     groups=None,
C
caoying03 已提交
2813
                     param_attr=None,
2814
                     bias_attr=None,
C
chengduoZH 已提交
2815
                     use_cudnn=True,
2816
                     act=None,
C
caoying03 已提交
2817
                     name=None):
Y
Yu Yang 已提交
2818
    """
2819 2820 2821 2822 2823 2824 2825 2826
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2827 2828
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2829 2830 2831
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2832 2833 2834 2835 2836

    For each input :math:`X`, the equation is:

    .. math::

2837
        Out = \sigma (W \\ast X + b)
2838

2839
    Where:
2840 2841 2842

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2843 2844 2845 2846
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2847

2848 2849 2850 2851
    Example:

        - Input:

2852
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2853

2854
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2855 2856 2857

        - Output:

2858
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2859 2860

        Where
Y
Yu Yang 已提交
2861

2862 2863
        .. math::

2864 2865 2866 2867
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2868 2869

    Args:
2870 2871 2872 2873
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2874 2875 2876 2877
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2906
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2907 2908 2909
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2910
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2911
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2912 2913

    Returns:
2914
        Variable: The tensor variable storing the convolution transpose result.
2915 2916

    Raises:
2917 2918
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2919 2920 2921 2922

    Examples:
       .. code-block:: python

2923 2924
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2925
    """
C
chengduo 已提交
2926
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2927 2928 2929 2930 2931 2932 2933 2934
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2935 2936 2937
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2938 2939 2940
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2941

C
chengduoZH 已提交
2942 2943
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2944

Y
Yu Yang 已提交
2945 2946 2947 2948 2949
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2950

Y
Yu Yang 已提交
2951 2952
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2953

C
chengduoZH 已提交
2954
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2955
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2956
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2957
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2958
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2959 2960 2961
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2962

2963 2964 2965 2966 2967 2968 2969
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2970
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2971
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2972

Y
Yu Yang 已提交
2973 2974 2975
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2976
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2977
    helper.append_op(
2978
        type=op_type,
Y
Yu Yang 已提交
2979 2980
        inputs={'Input': [input],
                'Filter': [img_filter]},
2981
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2982
        attrs={
2983
            'output_size': output_size,
2984 2985 2986 2987 2988
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2989 2990
        })

2991 2992 2993
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2994 2995


2996
def conv3d_transpose(input,
Y
Yu Yang 已提交
2997 2998 2999
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3000 3001 3002
                     padding=0,
                     stride=1,
                     dilation=1,
3003
                     groups=None,
C
caoying03 已提交
3004
                     param_attr=None,
3005
                     bias_attr=None,
C
chengduoZH 已提交
3006
                     use_cudnn=True,
3007
                     act=None,
C
caoying03 已提交
3008
                     name=None):
Y
Yu Yang 已提交
3009
    """
3010
    **Convlution3D transpose layer**
3011

3012
    The convolution3D transpose layer calculates the output based on the input,
3013
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3014 3015 3016 3017 3018 3019
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3020 3021 3022
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3023 3024 3025 3026 3027

    For each input :math:`X`, the equation is:

    .. math::

3028
        Out = \sigma (W \\ast X + b)
3029 3030 3031

    In the above equation:

3032 3033
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3034 3035 3036 3037
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3038

3039 3040 3041 3042
    Example:

        - Input:

3043
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3044

3045
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3046 3047 3048

        - Output:

3049
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3050 3051

        Where
Y
Yu Yang 已提交
3052

3053 3054
        .. math::

3055 3056 3057
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3058 3059

    Args:
3060
        input(Variable): The input image with [N, C, D, H, W] format.
3061 3062 3063
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3064
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3065 3066
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3067
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3068 3069 3070
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3071 3072
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3073
        stride(int|tuple): The stride size. If stride is a tuple, it must
3074 3075
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3076
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3077 3078 3079
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3080 3081 3082 3083 3084
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3094 3095
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3096 3097
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3098 3099
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3100 3101

    Returns:
3102
        Variable: The tensor variable storing the convolution transpose result.
3103 3104

    Raises:
3105 3106
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3107 3108 3109 3110

    Examples:
       .. code-block:: python

3111 3112
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3113
    """
C
chengduo 已提交
3114
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3115 3116
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3117
    if not isinstance(input, Variable):
3118
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3119 3120
    input_channel = input.shape[1]

3121 3122 3123
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3124

C
chengduoZH 已提交
3125 3126 3127
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3128 3129 3130 3131 3132 3133
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3134 3135 3136
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3137

3138
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3139
                         padding[0] - 1) // dilation[0] + 1
3140
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3141
                         padding[1] - 1) // dilation[1] + 1
3142
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3143
                         padding[2] - 1) // dilation[2] + 1
3144
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3145
    else:
3146 3147
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3148

3149
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3150
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3151 3152 3153
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3154
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3155
    helper.append_op(
3156
        type=l_type,
Y
Yu Yang 已提交
3157 3158
        inputs={'Input': [input],
                'Filter': [img_filter]},
3159
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3160 3161 3162 3163
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3164
            'groups': groups,
C
chengduoZH 已提交
3165 3166
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3167

3168 3169
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3170
    return out
Y
yangyaming 已提交
3171 3172


Y
yangyaming 已提交
3173
def sequence_expand(x, y, ref_level=-1, name=None):
3174
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3175 3176 3177 3178
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3179 3180 3181 3182 3183

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3184
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3185
                x.data = [[a], [b], [c], [d]]
3186 3187 3188
                x.dims = [4, 1]

            y is a LoDTensor:
3189 3190
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3191

Y
yangyaming 已提交
3192
            ref_level: 0
3193

Y
yangyaming 已提交
3194
            then output is a 1-level LoDTensor:
3195
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3196
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3197 3198 3199 3200
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3201
                x.data = [[a], [b], [c]]
3202 3203 3204
                x.dims = [3, 1]

            y is a LoDTensor:
3205
                y.lod = [[2, 0, 3]]
3206

Y
yangyaming 已提交
3207
            ref_level: -1
3208

Y
yangyaming 已提交
3209 3210 3211
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3212 3213 3214
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3215 3216
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3217
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3218
                        will be named automatically.
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3229
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3230
    """
Y
yangyaming 已提交
3231
    helper = LayerHelper('sequence_expand', input=x, **locals())
3232
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3233
    tmp = helper.create_variable_for_type_inference(dtype)
3234
    helper.append_op(
Y
yangyaming 已提交
3235 3236 3237 3238 3239
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3240
    return tmp
3241 3242


C
chengduo 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3299
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3300 3301 3302 3303 3304 3305 3306 3307
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3308
@templatedoc()
3309
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3310 3311 3312 3313 3314
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3315 3316 3317
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3318
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3319 3320 3321 3322
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3323 3324 3325
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3326

F
fengjiayi 已提交
3327
    Returns:
M
minqiyang 已提交
3328
        Variable: The padded sequence batch and the original lengths before
3329
                  padding. All sequences has the same length.
M
minqiyang 已提交
3330

F
fengjiayi 已提交
3331 3332 3333 3334 3335 3336 3337
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3338
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3339
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3340 3341 3342 3343 3344
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3345 3346
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3347 3348 3349 3350

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3351 3352 3353 3354 3355 3356
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3357 3358
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3359
        attrs={'padded_length': maxlen})
3360
    return out, length
F
fengjiayi 已提交
3361 3362


3363
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3364
    """
3365
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3366

3367 3368
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3378 3379 3380
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3381
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3382 3383 3384 3385 3386 3387

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3388
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3389 3390 3391 3392 3393 3394

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3395 3396
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3411
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3423 3424 3425 3426 3427 3428 3429 3430 3431
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3432 3433
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3434 3435 3436

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3437 3438

    This layer does the search in beams for one time step. Specifically, it
3439 3440 3441 3442 3443 3444
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3445

3446 3447 3448 3449 3450 3451 3452 3453
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3454

3455
    Args:
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3481

3482
    Returns:
3483 3484
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3485 3486 3487 3488

    Examples:
        .. code-block:: python

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3506 3507 3508 3509
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3510 3511 3512
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3513 3514 3515 3516 3517

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3518
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3536 3537 3538 3539 3540 3541 3542
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3543

3544 3545 3546 3547 3548 3549 3550 3551 3552
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3553

3554 3555 3556 3557 3558 3559
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3560

3561 3562 3563 3564 3565 3566 3567 3568
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3569 3570
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3586 3587 3588 3589
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3590
              param_attr=None,
C
caoying03 已提交
3591 3592
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3593 3594 3595 3596
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3597
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3598

3599
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3600

3601
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3602

3603
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3604 3605 3606

            h_t & = o_t tanh(c_t)

3607 3608 3609 3610 3611 3612
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3613 3614 3615

        .. math::

3616
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3617 3618 3619 3620 3621 3622 3623 3624

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3625
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3626 3627

    Args:
Y
yangyaming 已提交
3628 3629 3630 3631 3632 3633
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3634
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3647 3648
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3649 3650

    Returns:
Y
yangyaming 已提交
3651
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3652 3653

    Raises:
3654 3655 3656 3657
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3658 3659 3660 3661 3662 3663

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3664
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3665
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3666
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3683
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3684 3685 3686 3687
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3688 3689
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3690 3691 3692
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3693
    size = cell_t_prev.shape[1]
3694
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3695 3696
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3697
                param_attr=param_attr,
3698
                bias_attr=bias_attr)
Y
yangyaming 已提交
3699
    dtype = x_t.dtype
X
Xin Pan 已提交
3700 3701
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3711
    return h, c
G
guosheng 已提交
3712 3713


C
caoying03 已提交
3714
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3715
    """
Y
yangyaming 已提交
3716
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3717 3718 3719

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3720
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3721 3722
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3723 3724
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3725
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3726
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3727
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3728 3729
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3730 3731 3732

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3733

G
guosheng 已提交
3734 3735 3736 3737 3738 3739
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3740
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3741 3742 3743 3744
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3745 3746 3747 3748

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3749
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3750 3751 3752
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3753 3754
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3755
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3756 3757
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3758 3759 3760 3761 3762
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3763
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3764 3765 3766 3767
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3768 3769


C
caoying03 已提交
3770
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3771
    """
Y
Yibing Liu 已提交
3772
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3773 3774 3775

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3776 3777 3778
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3779
            must be in the range :math:`[-rank(input), rank(input))`. If
3780
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3781
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3782 3783
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3784
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3785
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3786
                       will be named automatically.
G
guosheng 已提交
3787 3788

    Returns:
Y
Yibing Liu 已提交
3789
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3790

G
guosheng 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3801 3802
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3803 3804 3805 3806 3807 3808 3809

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3810 3811
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3812
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3813 3814
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3815 3816 3817 3818 3819
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3820
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3821 3822 3823 3824
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3825 3826


C
caoying03 已提交
3827
def reduce_max(input, dim=None, keep_dim=False, name=None):
3828
    """
Y
yangyaming 已提交
3829
    Computes the maximum of tensor elements over the given dimension.
3830 3831 3832

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3833
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3834 3835 3836
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3837
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3838 3839
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3840
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3841 3842
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3843 3844 3845

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3858 3859 3860 3861 3862 3863 3864

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3865 3866
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3867
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3868 3869
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3870 3871 3872 3873 3874
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3875
            'dim': dim if dim != None else [0],
3876 3877 3878 3879 3880 3881
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3882
def reduce_min(input, dim=None, keep_dim=False, name=None):
3883
    """
Y
yangyaming 已提交
3884
    Computes the minimum of tensor elements over the given dimension.
3885 3886 3887

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3888
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3889 3890 3891
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3892
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3893 3894
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3895
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3896 3897
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3898 3899 3900

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3901

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3913 3914 3915 3916 3917 3918 3919

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3920 3921
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3922
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3923 3924
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3925 3926 3927 3928 3929
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3930
            'dim': dim if dim != None else [0],
3931 3932 3933 3934
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3935 3936


3937 3938 3939 3940 3941 3942
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3943
        dim (list|int|None): The dimensions along which the product is performed. If
3944 3945
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3946 3947
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3948 3949 3950
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3951
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3952
            layer will be named automatically.
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3967
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3968
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3969 3970 3971 3972 3973 3974 3975

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3976 3977
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3978
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3979 3980
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3981 3982 3983 3984 3985
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3986
            'dim': dim if dim != None else [0],
3987 3988 3989 3990 3991 3992
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3993
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3994
    """
C
caoying03 已提交
3995
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3996 3997 3998

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3999 4000 4001 4002 4003
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4004
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4005
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4006
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4007 4008
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4009 4010

    Returns:
D
dzhwinter 已提交
4011
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4021 4022
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4038
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4061
    .. math::
4062 4063

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4064 4065 4066 4067 4068

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4069
        x(Variable|list): The input tensor to l2_normalize layer.
4070
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4071 4072
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4073
        epsilon(float): The epsilon value is used to avoid division by zero, \
4074
            the defalut value is 1e-10.
4075
        name(str|None): A name for this layer(optional). If set None, the layer \
4076
            will be named automatically.
C
caoying03 已提交
4077 4078

    Returns:
4079
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4080 4081

    Examples:
4082

C
caoying03 已提交
4083 4084
        .. code-block:: python

4085 4086 4087 4088
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4089 4090
    """

F
fengjiayi 已提交
4091 4092
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4093 4094
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4095 4096
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4097
    helper.append_op(
4098 4099 4100 4101
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4102
        attrs={
4103 4104
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4105 4106
        })
    return out
4107 4108


S
sneaxiy 已提交
4109
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4110
    """
Y
ying 已提交
4111 4112 4113 4114
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4115

C
chengduoZH 已提交
4116
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4117
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4118

4119 4120 4121 4122 4123
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4124
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4125

C
chengduoZH 已提交
4126
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4127
      performs in the following way.
G
guosheng 已提交
4128

4129
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4130
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4131
        last two dimensions and a batched matrix multiply supporting broadcast
4132
        applies on the two tensors.
G
guosheng 已提交
4133

Y
ying 已提交
4134 4135
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4136
    removed after matrix multiplication.
G
guosheng 已提交
4137 4138 4139

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4140 4141 4142
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4143
        alpha (float): The scale of output. Default 1.0.
4144
        name(str|None): A name for this layer(optional). If set None, the layer
4145
            will be named automatically.
G
guosheng 已提交
4146 4147

    Returns:
4148
        Variable: The product Tensor variable.
G
guosheng 已提交
4149

G
guosheng 已提交
4150 4151 4152
    Examples:
        .. code-block:: python

4153
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4154 4155
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4156

4157 4158
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4159

4160 4161
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4162

4163 4164
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4165 4166 4167 4168

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4169 4170
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4171

Y
ying 已提交
4172
            # x: [M], y: [N]
4173
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4174
    """
Y
ying 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4187
            y_shape = y_shape + [1]
Y
ying 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4204
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4205
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4206
    helper.append_op(
4207 4208 4209 4210
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4211 4212 4213
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4214
            'alpha': float(alpha),
S
sneaxiy 已提交
4215
        })
4216
    return out
4217 4218


4219
def topk(input, k, name=None):
Q
qingqing01 已提交
4220 4221 4222 4223
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4224
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4225 4226 4227 4228 4229 4230
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4252 4253 4254
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4255
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4256
                 of input.
4257
        name(str|None): A name for this layer(optional). If set None, the layer
4258
                       will be named automatically.
F
fengjiayi 已提交
4259
                       Default: None
Q
qingqing01 已提交
4260 4261

    Returns:
4262 4263 4264
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4265
        within the last dimension of input.
Q
qingqing01 已提交
4266

F
fengjiayi 已提交
4267 4268
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4269 4270 4271 4272 4273 4274 4275

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4276 4277
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4289
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4290
    """
Y
ying 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4300

Y
ying 已提交
4301
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4302

4303
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4304 4305
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4306
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4307

4308
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4309 4310
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4311

4312 4313 4314
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4315
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4316
                          the length of reference string.
4317
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4318
                                     calculating edit distance.
4319
        name (str): The name of this layer. It is optional.
4320

W
wanghaoshuang 已提交
4321
    Returns:
W
wanghaoshuang 已提交
4322
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4323 4324 4325 4326

    Examples:
        .. code-block:: python

T
tink2123 已提交
4327 4328
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4329
            cost = fluid.layers.edit_distance(input=x,label=y)
4330
    """
4331
    helper = LayerHelper("edit_distance", **locals())
4332

4333
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4334
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4335 4336
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4337 4338 4339 4340 4341

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4342
            attrs={"tokens": ignored_tokens})
4343 4344 4345 4346 4347
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4348
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4349
            attrs={"tokens": ignored_tokens})
4350 4351
        label = erased_label

4352
    # edit distance op
X
Xin Pan 已提交
4353 4354
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4355 4356 4357 4358
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4359 4360
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4361 4362
        attrs={"normalized": normalized})

4363
    return edit_distance_out, sequence_num
4364 4365 4366 4367 4368


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4369

Y
ying 已提交
4370 4371 4372 4373
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4391
        input.lod = [[4, 4]]
4392 4393 4394 4395 4396 4397 4398

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4399
        output.lod = [[2, 1]]
4400 4401 4402

    Args:

Y
ying 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4412
        name (str): The name of this layer. It is optional.
4413 4414

    Returns:
4415
        Variable: CTC greedy decode result. If all the sequences in result were
4416
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4417 4418 4419 4420 4421

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4422

4423
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4424
    """
4425
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4426
    _, topk_indices = topk(input, k=1)
4427 4428

    # ctc align op
X
Xin Pan 已提交
4429
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4430 4431 4432
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4433
        outputs={"Output": [ctc_out]},
4434 4435
        attrs={"merge_repeated": True,
               "blank": blank})
4436
    return ctc_out
4437 4438


W
Wu Yi 已提交
4439
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4440
    """
4441 4442
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4443
    to compute Connectionist Temporal Classification (CTC) loss.
4444 4445
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4446 4447 4448
    input tensor.

    Args:
4449
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4450 4451 4452 4453
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4454
       label (Variable): The ground truth of variable-length sequence,
4455 4456 4457
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4458 4459
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4460 4461 4462
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4463
         follewed by a mean_op.
W
Wu Yi 已提交
4464
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4465 4466

    Returns:
4467 4468
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4469 4470

    Examples:
4471

W
wanghaoshuang 已提交
4472
        .. code-block:: python
4473

4474 4475 4476
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4477 4478

    """
F
fengjiayi 已提交
4479
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4480 4481
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4482 4483 4484 4485 4486 4487
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4488 4489 4490 4491 4492
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4493
    return loss_out
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4509 4510 4511
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4512 4513 4514 4515 4516
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4517

4518
            out.lod  = [[0, 1, 3]]
4519 4520 4521 4522

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4523 4524 4525 4526 4527 4528 4529
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4530 4531 4532

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4533 4534

    Returns:
4535

4536 4537 4538 4539 4540
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4541
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4542
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4543 4544
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4545
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4546 4547 4548 4549 4550 4551
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4552 4553


4554 4555 4556 4557
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4558 4559 4560 4561 4562 4563
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4564
        num_neg_samples=None,
4565 4566 4567
        name=None,
        sampler="uniform",
        custom_dist=None,
4568 4569
        seed=0,
        is_sparse=False):
4570 4571 4572 4573 4574 4575 4576
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4577 4578
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4579
            sample is 1.0.
C
chengduo 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4589
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4590 4591
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4592 4593 4594
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4595
        custom_dist (float[]): A float[] with size=num_total_classes.
4596 4597 4598 4599
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4600
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4601

4602
    Returns:
Y
Yibing Liu 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4630 4631 4632 4633 4634 4635 4636 4637 4638

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4639

4640
    """
Y
Yang Yu 已提交
4641 4642 4643
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4644 4645

    dim = input.shape[1]
Y
Yang Yu 已提交
4646 4647 4648 4649 4650 4651
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4652
    inputs = {}
C
chengduo 已提交
4653 4654 4655 4656 4657 4658 4659
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4660 4661 4662
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4663

4664 4665 4666 4667
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4668 4669 4670 4671 4672 4673 4674

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4727 4728 4729 4730
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4731 4732 4733 4734 4735
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4736 4737
    attrs = {
        'num_total_classes': int(num_total_classes),
4738 4739
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4740 4741
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4742
    }
Y
Yang Yu 已提交
4743 4744 4745

    helper.append_op(
        type='nce',
C
chengduo 已提交
4746
        inputs=inputs,
Y
Yang Yu 已提交
4747 4748 4749 4750 4751 4752
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4753
    return cost / (num_neg_samples + 1)
4754 4755


C
chengduo 已提交
4756 4757
def hsigmoid(input,
             label,
4758
             num_classes,
C
chengduo 已提交
4759 4760
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4761
             name=None,
4762 4763 4764
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4765
             is_sparse=False):
W
weixing02 已提交
4766 4767
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4768
    process of language model. This operator organizes the classes into a
4769 4770
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4771 4772 4773 4774 4775 4776
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4777
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4778
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4779

4780 4781 4782 4783 4784 4785 4786 4787 4788
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4789
    Args:
M
minqiyang 已提交
4790
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4791 4792 4793 4794
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4795 4796 4797
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4809 4810 4811 4812 4813 4814 4815
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4816
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4817 4818
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4819 4820

    Returns:
J
JiabinYang 已提交
4821
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4822 4823 4824 4825 4826

    Examples:

        .. code-block:: python

G
guosheng 已提交
4827 4828 4829
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4830 4831 4832 4833
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4834 4835
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4836
    dim = input.shape[1]
4837
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4838 4839 4840
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4841 4842 4843 4844
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4845 4846
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4847 4848 4849
    else:
        pass

J
JiabinYang 已提交
4850 4851
    weights = None

4852
    if not is_custom:
J
JiabinYang 已提交
4853 4854 4855 4856 4857 4858 4859 4860
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4861
            shape=[num_classes, dim],
J
JiabinYang 已提交
4862 4863
            is_bias=False,
            dtype=input.dtype)
4864 4865 4866
    inputs = {
        "X": input,
        "W": weights,
4867 4868
        "PTable": path_table,
        "PathCode": path_code,
4869 4870
        "Label": label
    }
W
weixing02 已提交
4871
    if helper.bias_attr:
4872
        if not is_custom:
J
JiabinYang 已提交
4873 4874
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4875
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4876 4877 4878 4879 4880 4881
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4882
                shape=[num_classes, 1],
J
JiabinYang 已提交
4883 4884 4885
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4886 4887
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4888
        inputs=inputs,
W
weixing02 已提交
4889 4890
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4891 4892
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4893 4894 4895
    return out


Y
fix ci.  
ying 已提交
4896
def transpose(x, perm, name=None):
Y
ying 已提交
4897 4898 4899 4900 4901 4902 4903
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4904 4905 4906
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4907 4908 4909 4910 4911 4912 4913

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4914
            # use append_batch_size=False to avoid prepending extra
4915
            # batch size in shape
4916
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4917
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4918
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4919 4920
    """

Y
fix ci.  
ying 已提交
4921
    if len(perm) != len(x.shape):
Y
ying 已提交
4922 4923 4924
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4925 4926 4927 4928 4929 4930
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4931 4932

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4933 4934
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4935
    helper.append_op(
4936
        type='transpose2',
Y
fix ci.  
ying 已提交
4937
        inputs={'X': [x]},
4938 4939
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4940 4941
        attrs={'axis': perm})
    return out
4942 4943


4944 4945 4946 4947 4948 4949 4950
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4951
    """
4952 4953 4954 4955 4956 4957 4958
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4987 4988 4989 4990 4991 4992 4993 4994 4995
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4996 4997 4998
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4999 5000 5001 5002 5003
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5031 5032 5033
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5046
            output.dims = {8, 8}
5047

5048
            output.lod = [[4, 4]]
5049

D
dzhwinter 已提交
5050
     Examples:
5051 5052 5053

        .. code-block:: python

5054 5055
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5056 5057

    """
W
wanghaoshuang 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5068 5069 5070 5071 5072 5073 5074
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5075
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5076
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5077
    helper.append_op(
5078
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5079
    return out
5080 5081


Y
yuyang18 已提交
5082
@templatedoc()
5083
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5084 5085
    """
    ${comment}
5086 5087

    Args:
Y
yuyang18 已提交
5088
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5089 5090
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5091 5092 5093 5094 5095
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5096
        ${out_comment}.
5097 5098

    Examples:
Y
yuyang18 已提交
5099 5100 5101 5102
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5103 5104 5105 5106 5107 5108
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5109
    out = helper.create_variable_for_type_inference(dtype)
5110 5111 5112 5113 5114
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5115
    return helper.append_activation(out)
5116 5117


Y
yuyang18 已提交
5118
@templatedoc()
5119 5120
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5121 5122 5123 5124 5125 5126 5127
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5128 5129

    Args:
Y
yuyang18 已提交
5130 5131
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5132 5133

    Returns:
Y
yuyang18 已提交
5134
        ${out_comment}.
5135 5136
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5137 5138 5139 5140 5141

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5142
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5143 5144 5145 5146 5147 5148
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5149 5150


5151 5152 5153
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5154
                               ignore_index=-100,
5155 5156
                               numeric_stable_mode=False,
                               return_softmax=False):
5157 5158
    """
    **Softmax With Cross Entropy Operator.**
5159

5160 5161 5162 5163
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5164

5165 5166 5167
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5168

5169 5170 5171
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5172

5173
    The equation is as follows:
5174

5175
    1) Hard label (one-hot label, so every sample has exactly one class)
5176

5177 5178 5179 5180
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5181

5182 5183 5184
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5185

5186 5187 5188 5189
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5190 5191 5192
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5193

S
sneaxiy 已提交
5194 5195 5196 5197 5198 5199 5200 5201
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5202 5203 5204 5205 5206 5207 5208 5209
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5210 5211
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5212
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5213 5214 5215
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5216 5217 5218
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5219
                                    stable algorithm. Default: False
5220
        return_softmax (bool): A flag indicating whether to return the softmax
5221
                               along with the cross entropy loss. Default: False
5222

5223
    Returns:
5224 5225 5226 5227
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5228
                              2-D tensor with shape [N x K].
5229 5230 5231 5232 5233 5234 5235

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5236 5237
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5238 5239
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5240 5241
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5242 5243 5244 5245 5246 5247
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5248 5249 5250 5251 5252
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5253 5254 5255 5256

    if return_softmax:
        return loss, softmax

5257 5258 5259 5260 5261
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5262 5263
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5264
    For each instance, it computes the smooth L1 loss element by element first
5265
    and then sums all the losses. So the shape of ouput Variable is
5266
    [batch_size, 1].
5267

5268 5269
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5270
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5271
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5272
            L1 loss op with same shape as :attr:`x`.
5273
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5274 5275
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5276
            by this tensor element by element.
5277
        outside_weight (Variable|None): A tensor with rank at least 2. This
5278 5279
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5280
            element by element.
5281
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5282 5283
           scalar with default value 1.0.

5284
    Returns:
5285
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5286 5287 5288 5289 5290

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5291 5292
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5293
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5294
            out = fluid.layers.smooth_l1(x=fc, y=label)
5295
    """
5296

5297
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5298 5299
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5312 5313 5314 5315


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5316
    This layer creates the one-hot representations for input indices.
5317 5318

    Args:
Y
Yibing Liu 已提交
5319 5320
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5321 5322

    Returns:
Y
Yibing Liu 已提交
5323
        Variable: The one-hot representations of input.
5324 5325

    Examples:
C
caoying03 已提交
5326
        .. code-block:: python
5327

Y
Yibing Liu 已提交
5328 5329
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5330 5331
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5332
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5333 5334 5335 5336 5337 5338
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5339 5340


Y
Yu Yang 已提交
5341
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5342
    """
Y
yi.wu 已提交
5343 5344 5345
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5346 5347 5348 5349 5350 5351

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5352 5353
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5354 5355 5356 5357 5358 5359

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5360 5361
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5362 5363
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5364 5365 5366 5367 5368
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5369
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5370
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5371 5372
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5373 5374
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5375 5376 5377
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5378 5379


5380
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5381
    """
C
caoying03 已提交
5382 5383
    Gives a new shape to the input Tensor without changing its data.

5384 5385 5386 5387 5388
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5389

5390
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5391

5392 5393 5394 5395
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5396
    2. 0 means the actual dimension value is going to be copied from the
5397 5398 5399 5400
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5401 5402

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5403
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5404
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5405

5406
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5407 5408
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5409 5410
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5411
    dimensions.
C
caoying03 已提交
5412

5413
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5414 5415 5416 5417
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5418 5419

    Args:
5420
        x(variable): The input tensor.
C
caoying03 已提交
5421 5422
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5423 5424 5425 5426 5427
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5428 5429
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5430 5431 5432 5433 5434 5435 5436
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5437
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5438

5439
    Returns:
G
guosheng 已提交
5440 5441 5442 5443
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5444

X
Xin Pan 已提交
5445 5446 5447
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5448 5449
    Examples:
        .. code-block:: python
G
guosheng 已提交
5450

5451
            data = fluid.layers.data(
5452
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5453
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5454
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5455 5456 5457
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5458
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5459 5460 5461 5462 5463
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5464

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5480
    helper = LayerHelper("reshape2", **locals())
5481 5482
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5483
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5484
    helper.append_op(
5485
        type="reshape2",
X
Xin Pan 已提交
5486
        inputs=inputs,
D
dzhwinter 已提交
5487
        attrs={"shape": shape},
5488 5489
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5490

D
dzhwinter 已提交
5491
    return helper.append_activation(out)
5492

5493

5494
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5495
    """
M
minqiyang 已提交
5496 5497 5498
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5499
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5500

Y
Yibing Liu 已提交
5501 5502
    Examples:
    Case 1:
M
minqiyang 已提交
5503
      Given
Y
Yibing Liu 已提交
5504 5505 5506 5507 5508 5509 5510 5511
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5512
        and
Y
Yibing Liu 已提交
5513 5514 5515
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5516

Y
Yibing Liu 已提交
5517
    Args:
5518
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5519
        axes (list): List of integers, indicating the dimensions to be squeezed.
5520
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5521 5522 5523 5524 5525 5526 5527 5528

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5529
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5530 5531
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5532 5533
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5534
    helper.append_op(
5535
        type="squeeze2",
5536
        inputs={"X": input},
Y
Yibing Liu 已提交
5537
        attrs={"axes": axes},
5538 5539
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5540

5541 5542 5543
    return out


5544
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5545
    """
M
minqiyang 已提交
5546 5547 5548
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5549

M
minqiyang 已提交
5550 5551
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5552
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5553

Y
Yibing Liu 已提交
5554
    Args:
5555
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5556
        axes (list): List of integers, indicating the dimensions to be inserted.
5557
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5558 5559 5560 5561 5562 5563 5564 5565

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5566
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5567 5568
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5569 5570
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5571
    helper.append_op(
5572
        type="unsqueeze2",
5573
        inputs={"X": input},
Y
Yibing Liu 已提交
5574
        attrs={"axes": axes},
5575 5576
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5577

5578 5579
    return out

5580

Y
yangyaming 已提交
5581
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5582
    """
Y
Yibing Liu 已提交
5583
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5584 5585 5586 5587
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5588
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5589 5590 5591 5592 5593 5594

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5595
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5596 5597 5598
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5599
            target_lod: [4, 2]
Y
yangyaming 已提交
5600 5601

            then we get a 1-level LoDTensor:
5602
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5603 5604 5605 5606 5607 5608
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5609
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5610 5611 5612 5613
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5614
                y.data = [[2, 4]]
Y
yangyaming 已提交
5615 5616 5617
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5618
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5619 5620 5621 5622 5623 5624
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5625
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5626 5627 5628 5629
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5630
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5631 5632 5633 5634
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5635
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5636 5637 5638 5639 5640
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5641
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5642
                           from :attr:`y`.
Y
yangyaming 已提交
5643
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5644
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5645 5646

    Returns:
Y
Yibing Liu 已提交
5647
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5648 5649

    Raises:
Y
Yibing Liu 已提交
5650
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5686
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5715 5716
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5729 5730 5731
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5745 5746 5747 5748


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5749
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5750
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5751

G
guosheng 已提交
5752 5753 5754 5755
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5778
                         The length of :attr:paddings must be
G
guosheng 已提交
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5789

G
guosheng 已提交
5790 5791 5792 5793 5794 5795
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5796
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5797 5798 5799 5800 5801 5802 5803
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5804 5805


C
chengduo 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5876
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5877 5878 5879 5880 5881 5882 5883 5884 5885
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5886 5887 5888 5889 5890 5891 5892
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5893 5894
    called label-smoothing regularization (LSR).

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5918
                              be :math:`(1, class\_num)`.
5919 5920
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5921
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5941
    smooth_label = helper.create_variable_for_type_inference(dtype)
5942 5943 5944 5945 5946 5947 5948
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5949 5950


W
wopeizl 已提交
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5987 5988


J
jerrywgz 已提交
5989 5990 5991 5992 5993 5994
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5995 5996
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6013 6014 6015
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6016 6017 6018 6019 6020 6021
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6022
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6063 6064
        .. code-block:: python

W
whs 已提交
6065 6066 6067 6068
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6069
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6070 6071 6072 6073 6074 6075
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6076 6077


6078 6079 6080 6081
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6082 6083
                 resample='BILINEAR',
                 actual_shape=None):
6084
    """
Q
qiaolongfei 已提交
6085
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6086

6087
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6088 6089 6090
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6091

6092
        'BILINEAR' : Bilinear interpolation
6093
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6094

6095
    Args:
6096
        input (Variable): The input tensor of image resize layer,
6097 6098
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6099
        out_shape(list|tuple|Variable|None): Output shape of image resize
6100 6101
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6102
        scale(float|None): The multiplier for the input height or width.
6103 6104 6105
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6106 6107
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6108
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6109
                       currently.
6110
                       Default: 'BILINEAR'
6111 6112 6113
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6114
                                :attr:`out_shape` and :attr:`scale` specifying
6115 6116 6117 6118 6119 6120 6121
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6122 6123
                                constructing stage.
                                Default: None
6124 6125

    Returns:
Q
update  
qiaolongfei 已提交
6126 6127
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6128

6129 6130 6131
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6132
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6133 6134 6135 6136
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6137 6138 6139
    Examples:
        .. code-block:: python

6140
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6141
    """
6142 6143 6144 6145
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6146 6147
    if resample not in resample_methods:
        raise ValueError(
6148
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6149
        )
6150
    resample_type = resample_methods[resample]
6151
    if out_shape is None and scale is None:
6152
        raise ValueError("One of out_shape and scale must not be None.")
6153
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6154
    dtype = helper.input_dtype()
6155 6156 6157 6158

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6159 6160 6161
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6162
    if out_shape is not None:
6163 6164 6165 6166
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6167
            inputs['OutSize'] = out_shape
6168 6169 6170 6171 6172 6173 6174 6175
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6176 6177 6178 6179
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6180 6181 6182 6183 6184
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6185
    out = helper.create_variable_for_type_inference(dtype)
6186
    helper.append_op(
6187
        type='{}_interp'.format(resample_type),
6188
        inputs=inputs,
6189
        outputs={"Out": out},
6190 6191 6192
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6193
    return out
F
stash  
fengjiayi 已提交
6194 6195


6196
@templatedoc(op_type="bilinear_interp")
6197 6198 6199 6200 6201
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6202
    """
6203 6204
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6205 6206
    in priority order.

6207 6208 6209 6210
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6211 6212
    again in the other direction.

6213
    For details of bilinear interpolation, please refer to Wikipedia:
6214
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6215 6216 6217 6218 6219

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6220

Y
yuyang18 已提交
6221 6222 6223 6224 6225
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6226 6227 6228
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6229
                                :attr:`out_shape` and :attr:`scale` specifying
6230 6231 6232 6233 6234 6235 6236
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6237 6238
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6239 6240 6241

    Returns:
        ${out_comment}.
6242 6243 6244 6245 6246

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6247 6248
    """

6249
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6250 6251


6252
@templatedoc(op_type="nearest_interp")
6253 6254 6255 6256 6257
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6258
    """
6259
    Resize input by performing nearest neighbor interpolation in both the
6260 6261
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6262 6263
    out_shape and scale in priority order.

6264
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6265
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6266 6267 6268 6269 6270

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6271

Y
yuyang18 已提交
6272 6273 6274 6275 6276
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6277 6278 6279
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6280
                                :attr:`out_shape` and :attr:`scale` specifying
6281 6282 6283 6284 6285 6286 6287
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6288 6289
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6290 6291 6292

    Returns:
        ${out_comment}.
6293 6294 6295 6296 6297

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6298 6299
    """

6300
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6301 6302 6303 6304


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6305 6306 6307
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6308 6309 6310 6311 6312 6313 6314
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6315
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6316

6317
    Returns:
Q
update  
qiaolongfei 已提交
6318
        Variable: The output is a 4-D tensor of the shape
6319
        (num_batches, channls, out_h, out_w).
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6330 6331 6332
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6333 6334 6335
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6336 6337
def gather(input, index):
    """
Q
qiaolongfei 已提交
6338 6339
    **Gather Layer**

6340
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6341 6342 6343 6344
    of X indexed by `index` and concatenate them together.

    .. math::

6345
        Out = X[Index]
W
whs 已提交
6346 6347 6348 6349 6350 6351 6352


    .. code-block:: text


                Given:

6353 6354
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6365
        input (Variable): The source input with rank>=1.
W
whs 已提交
6366 6367 6368 6369 6370 6371
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6372

W
whs 已提交
6373 6374 6375 6376 6377 6378
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6379
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6380 6381 6382 6383 6384 6385 6386 6387
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6419
    out = helper.create_variable_for_type_inference(dtype)
6420 6421 6422 6423 6424 6425 6426 6427 6428
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6479
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6480 6481 6482 6483 6484 6485 6486 6487 6488
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6502

6503 6504 6505
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6506
    """
F
stash  
fengjiayi 已提交
6507
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6508
    dtype = x.dtype
X
Xin Pan 已提交
6509
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6510
    if seed is None:
6511
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6512
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6513
    if isinstance(seed, int):
F
fengjiayi 已提交
6514 6515 6516 6517 6518
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6519 6520 6521 6522
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6523
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6524 6525
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6526 6527
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6528
    return out
W
whs 已提交
6529 6530


6531
def log(x, name=None):
W
wanghaoshuang 已提交
6532 6533 6534 6535 6536
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6537
        Out = \\ln(x)
W
wanghaoshuang 已提交
6538 6539

    Args:
6540
        x (Variable): Input tensor.
6541 6542
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6543 6544 6545 6546 6547 6548 6549 6550

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6551
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6552 6553
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6554
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6555
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6556
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6557 6558 6559
    return out


6560
def relu(x, name=None):
W
wanghaoshuang 已提交
6561 6562
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6563
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6564 6565 6566 6567
    the tensor elementwise.

    .. math::

6568
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6569 6570

    Args:
6571
        x (Variable): The input tensor.
6572 6573
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6574 6575 6576 6577 6578 6579 6580 6581

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6582
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6583 6584
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6585
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6586
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6587
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6588
    return out
6589 6590


C
chengduo 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6632 6633 6634
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6635 6636 6637 6638
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6639
    .. math::
6640 6641

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6642

6643
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6644 6645 6646 6647 6648
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6649
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6650
                           Its shape should be the same as input.
6651
        num_classes (int): The possible number of labels.
W
whs 已提交
6652 6653 6654 6655

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6656
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6657 6658 6659 6660

    Examples:

        .. code-block:: python
6661

W
whs 已提交
6662 6663 6664 6665
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6666 6667 6668
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6669 6670
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6671 6672
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6673
        outputs={
W
whs 已提交
6674 6675 6676
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6677 6678 6679
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6754
            isinstance(shape, Variable)):
6755 6756 6757 6758 6759
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6760
    out = helper.create_variable_for_type_inference(x.dtype)
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6778 6779


W
whs 已提交
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6797

W
whs 已提交
6798
              out_shape = [2, 3, 5, 5]
6799

W
whs 已提交
6800
          Step 1:
6801

W
whs 已提交
6802 6803 6804
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6805

W
whs 已提交
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6876
            isinstance(out_shape, Variable)):
W
whs 已提交
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6898 6899 6900 6901 6902 6903 6904 6905
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6906

6907 6908
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6909

6910 6911 6912 6913
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6914

6915 6916 6917 6918 6919
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6920 6921 6922

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6958
    out = helper.create_variable_for_type_inference("float32")
6959 6960 6961 6962 6963 6964 6965 6966

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6967 6968


M
minqiyang 已提交
6969 6970
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6971
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6972
    which compares left score and right score passed in.
M
minqiyang 已提交
6973
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6974 6975 6976 6977 6978 6979

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6980
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6981 6982
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6983
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6984 6985 6986
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6987
       Variable: The ranking loss.
M
minqiyang 已提交
6988
    Raises:
M
minqiyang 已提交
6989
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6990 6991 6992 6993 6994 6995 6996
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6997
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6998 6999 7000 7001 7002 7003
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7004 7005
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
7031

W
whs 已提交
7032 7033
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
7034

W
whs 已提交
7035
      Case 0:
M
minqiyang 已提交
7036

W
whs 已提交
7037 7038 7039
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
7040

W
whs 已提交
7041 7042 7043
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7044

W
whs 已提交
7045
      Case 1:
M
minqiyang 已提交
7046

W
whs 已提交
7047 7048
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
7049

W
whs 已提交
7050 7051 7052
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7053

W
whs 已提交
7054
      Case 2:
M
minqiyang 已提交
7055

W
whs 已提交
7056 7057
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
7058

W
whs 已提交
7059 7060 7061
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7062 7063


W
whs 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7090
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7117 7118 7119 7120 7121

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7122 7123
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7124 7125
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7126
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7147 7148 7149 7150 7151

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7152 7153
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7154 7155
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7156
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7177 7178 7179 7180 7181

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7182 7183
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7184 7185
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7186
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7208 7209 7210 7211 7212

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7213
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7214
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7215 7216
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7217
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7240 7241 7242 7243 7244

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7245 7246
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7247 7248
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7249
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7271 7272 7273 7274 7275

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7276 7277
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7278 7279
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7280
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7281 7282 7283 7284 7285 7286 7287 7288
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7289 7290 7291 7292
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7293
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7294 7295 7296

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7297 7298
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7299 7300 7301 7302
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7303
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7304
                       will be named automatically.
J
jerrywgz 已提交
7305 7306 7307 7308 7309 7310 7311 7312

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7313
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7327
        attr=helper.param_attr,
J
jerrywgz 已提交
7328 7329 7330 7331
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7332
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7352
    Returns:
7353
        output(${out_type}): ${out_comment}
7354 7355 7356 7357 7358 7359 7360

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7361 7362
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7363
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7382
    Returns:
7383
        output(${out_type}): ${out_comment}
7384 7385 7386 7387 7388 7389 7390

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7391 7392
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7393
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7411
    Returns:
7412
        output(${out_type}): ${out_comment}
7413 7414 7415 7416 7417 7418 7419

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7420 7421
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7422
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7423 7424 7425 7426 7427 7428 7429 7430
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7444

7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7455 7456
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7472
        ValueError: If axis is not in range [0, rank(x)].
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7489 7490
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7491
    helper.append_op(
7492
        type='flatten2',
7493
        inputs={"X": x},
7494 7495
        outputs={'Out': out,
                 'XShape': x_shape},
7496 7497
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7498 7499


C
chenweihang 已提交
7500
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7501
    """
C
chenweihang 已提交
7502
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7503
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7504 7505
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7506

C
chenweihang 已提交
7507 7508 7509 7510
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7511
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7512 7513 7514 7515 7516 7517
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7518
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7519 7520 7521
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7522 7523 7524
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7536 7537
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7538 7539 7540 7541 7542 7543
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7544
    return out
7545

7546

S
sneaxiy 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7556

S
sneaxiy 已提交
7557
    .. math::
7558

S
sneaxiy 已提交
7559 7560 7561
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7562
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7563 7564 7565 7566
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7567 7568 7569
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7570 7571
    Returns:
        Variable: The output sequence mask.
7572

S
sneaxiy 已提交
7573 7574
    """

Q
qingqing01 已提交
7575
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7576
    if name is None:
X
Xin Pan 已提交
7577
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7578
    else:
X
Xin Pan 已提交
7579
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7580

Q
qingqing01 已提交
7581 7582 7583
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7584 7585
        outputs={'Y': out},
        attrs={
7586
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7587 7588 7589
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7590 7591


X
Xin Pan 已提交
7592
def stack(x, axis=0):
S
sneaxiy 已提交
7593 7594 7595 7596
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7597 7598 7599 7600 7601 7602 7603

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7604
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7605
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7606 7607

    Args:
7608
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7609
        axis (int|None): The axis along which all inputs are stacked.
7610

S
sneaxiy 已提交
7611 7612
    Returns:
        Variable: The stacked variable.
7613

S
sneaxiy 已提交
7614 7615
    """

X
Xin Pan 已提交
7616 7617 7618 7619 7620 7621
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7622
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7623
    helper.append_op(
S
sneaxiy 已提交
7624 7625
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7626

X
Xin Pan 已提交
7627
    return out
D
dzhwinter 已提交
7628 7629 7630 7631 7632 7633 7634


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7635

D
dzhwinter 已提交
7636 7637 7638
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7639
    raised.
D
dzhwinter 已提交
7640 7641

    Args:
M
minqiyang 已提交
7642
        x (Variable): Input variable.
D
dzhwinter 已提交
7643 7644
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7645

D
dzhwinter 已提交
7646 7647
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7648

D
dzhwinter 已提交
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7660
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7661 7662 7663 7664 7665 7666 7667 7668

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7681

W
whs 已提交
7682 7683 7684 7685
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7686

W
whs 已提交
7687
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7688

W
whs 已提交
7689
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7690

W
whs 已提交
7691 7692 7693 7694
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7695

W
whs 已提交
7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7712
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7713 7714 7715 7716 7717 7718
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7719 7720


G
fix  
gongweibao 已提交
7721 7722 7723
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7724
@templatedoc()
G
fix  
gongweibao 已提交
7725 7726 7727 7728 7729 7730 7731 7732 7733
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7734
    ${comment}
G
fix  
gongweibao 已提交
7735 7736

    Args:
G
gongweibao 已提交
7737 7738 7739
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7740
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7741 7742 7743
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7744 7745
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7746
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7747 7748 7749 7750

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7751
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7768 7769


G
gongweibao 已提交
7770
@templatedoc()
X
Xin Pan 已提交
7771
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7772
    """
G
gongweibao 已提交
7773
    ${comment}
G
fix  
gongweibao 已提交
7774 7775

    Args:
G
gongweibao 已提交
7776 7777 7778 7779
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7780 7781 7782
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7783
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7784 7785 7786 7787

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7788
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7799
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7800 7801 7802 7803 7804
        })

    return out


G
gongweibao 已提交
7805
@templatedoc()
G
fix  
gongweibao 已提交
7806
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7807
    """
G
gongweibao 已提交
7808
    ${comment}
G
fix  
gongweibao 已提交
7809 7810

    Args:
G
gongweibao 已提交
7811 7812 7813 7814
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7815
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7816 7817

    Returns:
G
gongweibao 已提交
7818
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7819 7820 7821 7822

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7823
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7835
@templatedoc()
G
fix  
gongweibao 已提交
7836 7837 7838 7839 7840 7841 7842 7843 7844
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7845
    ${comment}
G
fix  
gongweibao 已提交
7846 7847

    Args:
G
gongweibao 已提交
7848 7849
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7850
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7851 7852 7853 7854
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7855
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7856 7857

    Returns:
G
gongweibao 已提交
7858
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7859 7860 7861
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7862
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7881
@templatedoc()
X
Xin Pan 已提交
7882
def sum(x):
G
fix  
gongweibao 已提交
7883
    """
G
gongweibao 已提交
7884
    ${comment}
G
fix  
gongweibao 已提交
7885 7886

    Args:
G
gongweibao 已提交
7887
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7888 7889

    Returns:
G
gongweibao 已提交
7890
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7891 7892 7893
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7894 7895
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7896 7897 7898 7899
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7900
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7901 7902 7903 7904

    return out


G
gongweibao 已提交
7905
@templatedoc()
G
fix  
gongweibao 已提交
7906 7907
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7908
    ${comment}
G
fix  
gongweibao 已提交
7909 7910

    Args:
G
gongweibao 已提交
7911 7912 7913 7914
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7915 7916

    Returns:
G
gongweibao 已提交
7917
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7918 7919 7920 7921

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7922 7923
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7935
@templatedoc()
G
fix  
gongweibao 已提交
7936 7937
def shape(input):
    """
G
gongweibao 已提交
7938
    ${comment}
G
fix  
gongweibao 已提交
7939 7940

    Args:
G
gongweibao 已提交
7941
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7942 7943

    Returns:
G
gongweibao 已提交
7944
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7945 7946 7947 7948

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7949 7950
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7951
    helper.append_op(
G
fix  
gongweibao 已提交
7952
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7953 7954

    return out
G
merge  
gongweibao 已提交
7955 7956


S
sneaxiy 已提交
7957 7958 7959 7960 7961 7962 7963 7964
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7965 7966
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7967
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7968 7969 7970
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7971

S
sneaxiy 已提交
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7983
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7984 7985 7986 7987 7988 7989 7990 7991
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7992
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7993
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7994 7995 7996 7997 7998 7999

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8000
    if name is None:
X
Xin Pan 已提交
8001
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8002 8003 8004
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8015
    return helper.append_activation(out)
S
sneaxiy 已提交
8016 8017


X
Xin Pan 已提交
8018
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8019 8020 8021
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8022
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8023 8024 8025
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8026
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8027 8028 8029
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8030
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8031 8032 8033
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8034
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8035 8036 8037
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8038
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8039 8040 8041
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8042
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8054 8055
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8056
        ])
M
minqiyang 已提交
8057 8058


8059
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8060 8061
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8062 8063
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8064 8065 8066

    if out is None:
        if name is None:
X
Xin Pan 已提交
8067
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8083
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8095 8096 8097 8098 8099 8100 8101 8102 8103

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8104 8105 8106 8107 8108 8109 8110
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8111
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8123 8124 8125 8126 8127 8128 8129 8130 8131

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8132 8133 8134 8135 8136 8137 8138
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8139
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8151 8152 8153 8154 8155 8156 8157 8158 8159

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8160 8161 8162 8163 8164 8165 8166
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8167
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8178 8179 8180 8181 8182 8183 8184

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8185 8186 8187 8188
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8204 8205 8206 8207 8208 8209 8210

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8211 8212 8213 8214 8215
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8216 8217 8218 8219
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8243 8244 8245 8246 8247 8248 8249

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8250 8251 8252 8253 8254
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8255 8256 8257 8258
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8259 8260 8261 8262 8263 8264 8265 8266

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8285
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduozh 已提交
8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8338
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8339 8340 8341 8342 8343 8344 8345 8346 8347
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8348 8349
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8372
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8402
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8413 8414


J
JiabinYang 已提交
8415
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8416
    """
J
JiabinYang 已提交
8417
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8418 8419 8420

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8421
    The attr blocksize indicates the input block size.
8422 8423

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8424
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8425 8426

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8427
    (but keeping all data)
J
JiabinYang 已提交
8428

J
JiabinYang 已提交
8429
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8430
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8431 8432 8433 8434 8435
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8436
    Args:
J
JiabinYang 已提交
8437
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8438
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8439 8440

    Returns:
J
JiabinYang 已提交
8441
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8442 8443

    Raises:
J
JiabinYang 已提交
8444
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8445 8446 8447 8448 8449 8450

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8451
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8452
                x=data, blocksize=2)
J
JiabinYang 已提交
8453 8454
    """

J
JiabinYang 已提交
8455
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8456

J
JiabinYang 已提交
8457 8458
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8459 8460

    if name is None:
J
JiabinYang 已提交
8461 8462
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8463 8464 8465 8466 8467
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8468
        type="space_to_depth",
J
JiabinYang 已提交
8469
        inputs={"X": x},
J
JiabinYang 已提交
8470
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8471
        outputs={"Out": out})
J
JiabinYang 已提交
8472 8473
    return out

J
JiabinYang 已提交
8474

S
sneaxiy 已提交
8475 8476
@templatedoc()
def sequence_reverse(x, name=None):
8477
    """
S
sneaxiy 已提交
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8489
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8500 8501


8502 8503 8504 8505 8506 8507
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8508

8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8528
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8541 8542


B
barrierye 已提交
8543
def similarity_focus(input, axis, indexes, name=None):
8544
    """
B
barrierye 已提交
8545
    SimilarityFocus Operator
B
barrierye 已提交
8546 8547

    Generate a similarity focus mask with the same shape of input using the following method:
8548 8549 8550
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8551
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8552 8553 8554 8555 8556 8557 8558
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8559
       each index.
B
barrierye 已提交
8560 8561 8562 8563
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8613
    Args:
8614
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8615
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8616
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8617
            1, 2 or 3.
B
barrierye 已提交
8618
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8619 8620

    Returns:
8621
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8622
            as the input.
8623

B
barrierye 已提交
8624 8625 8626
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8627 8628
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8641 8642 8643 8644 8645
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8646 8647 8648 8649 8650 8651 8652
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8653 8654


M
minqiyang 已提交
8655 8656
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8657 8658
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8659 8660
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8699
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8700
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8701 8702 8703 8704 8705 8706 8707 8708 8709

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8710 8711
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8712 8713
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8714 8715 8716 8717 8718 8719 8720
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8721 8722


D
dengkaipeng 已提交
8723
@templatedoc()
8724 8725
def grid_sampler(x, grid, name=None):
    """
8726
    This operation samples input X by using bilinear interpolation based on
8727
    flow field grid, which is usually gennerated by affine_grid. The grid of
8728 8729 8730 8731
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8732
    interpolation value of 4 nearest corner points.
8733 8734 8735 8736 8737 8738 8739 8740

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8741
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8771 8772

    Args:
8773 8774 8775
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8776 8777

    Returns:
8778
        out(Variable): Output of shape [N, C, H, W] data samples input X
8779 8780 8781 8782 8783 8784 8785 8786 8787
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8788 8789 8790 8791 8792 8793 8794 8795 8796
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8797
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8798 8799
    ipts = {'X': x, 'Grid': grid}

8800
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8801 8802 8803
    return out


G
gmcather 已提交
8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8898 8899 8900 8901 8902 8903 8904 8905 8906 8907


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8908
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8909

Q
Qiao Longfei 已提交
8910
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8911 8912 8913
    For example:

    .. math::
8914
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8915

Q
Qiao Longfei 已提交
8916
    In this formula:
8917 8918
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8919
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8920
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8921 8922 8923
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8924 8925
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8926 8927 8928
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8929
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8930
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8931
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8932 8933 8934 8935
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8936
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8937 8938 8939 8940

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8941
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8942 8943
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8944
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8945 8946 8947 8948

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8949
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduozh 已提交
8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out