tensor.cc 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/include/tensor.h"

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
C
Chen Weihang 已提交
22
#include "paddle/pten/api/include/manual_api.h"
23 24 25
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/api/lib/utils/storage.h"
26
#include "paddle/pten/core/compat/convert_utils.h"
27 28 29
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_base.h"
#include "paddle/pten/core/tensor_meta.h"
30
#include "paddle/pten/core/tensor_utils.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, pten], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
53 54
#include "paddle/pten/common/complex.h"
#include "paddle/pten/common/float16.h"
55
#include "paddle/pten/core/ddim.h"
56
#include "paddle/pten/core/enforce.h"
57 58 59 60

namespace paddle {
namespace experimental {

61 62 63
// declare cast api
Tensor cast(const Tensor &x, DataType out_dtype);

64 65 66 67 68 69 70
/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

Tensor::Tensor(std::shared_ptr<pten::TensorBase> tensor_impl)
    : impl_(std::move(tensor_impl)) {
  PADDLE_ENFORCE_NOT_NULL(impl_,
71
                          pten::errors::InvalidArgument(
72 73 74 75 76 77 78 79
                              "TensorImpl with nullptr is not supported"));
}

Tensor::Tensor(const PlaceType &place)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
80
                                          pten::framework::make_ddim({}),
81 82
                                          pten::DataLayout::NCHW))))),
      place_{place} {}
83 84 85 86 87 88

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
89
                                          pten::framework::make_ddim(shape),
90 91
                                          pten::DataLayout::NCHW))))),
      place_{place} {}
92

93 94 95
Tensor::Tensor(std::shared_ptr<pten::TensorBase> tensor_impl,
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
96 97 98 99 100 101
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

102
pten::framework::DDim Tensor::dims() const { return impl_->dims(); }
103 104

std::vector<int64_t> Tensor::shape() const {
105
  return pten::framework::vectorize<int64_t>(impl_->dims());
106 107 108
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
109 110 111 112 113 114 115 116
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
                  "`paddle::experimental::full` method to create a new Tensor "
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
C
Chen Weihang 已提交
117
  if (is_dense_tensor()) {
118
    std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->set_meta(
119
        pten::DenseTensorMeta(dtype(), pten::framework::make_ddim(shape)));
120
  } else {
121
    PADDLE_THROW(pten::errors::Unimplemented(
122 123
        "Only support reshape operation on DenseTensor now."));
  }
124 125
}

126
DataType Tensor::dtype() const { return impl_->dtype(); }
127

128
DataType Tensor::type() const { return impl_->dtype(); }
129 130 131

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
132 133 134 135
bool Tensor::is_dense_tensor() const {
  return pten::DenseTensor::classof(impl_.get());
}

136 137 138
/* Part 3: Device and Backend methods */

PlaceType Tensor::place() const {
139 140 141 142 143
  if (!impl_->initialized()) {
    return place_;
  } else {
    return ConvertInnerPlaceToExtPlace(impl_->place());
  }
144 145
}

146 147 148
paddle::platform::Place Tensor::inner_place() const {
  return ConvertExtPlaceToInnerPlace(place());
}
149 150

bool Tensor::is_cpu() const {
151
  return paddle::platform::is_cpu_place(inner_place());
152 153 154
}

bool Tensor::is_cuda() const {
155
  return paddle::platform::is_gpu_place(inner_place());
156 157 158 159 160 161
}

/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
C
Chen Weihang 已提交
162
  if (is_dense_tensor()) {
163 164
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        ConvertExtPlaceToInnerPlace(place()));
165 166 167 168
  }
  return nullptr;
}

169 170 171 172 173 174 175 176 177
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
template PADDLE_API paddle::platform::complex<float>
178
    *Tensor::mutable_data<paddle::platform::complex<float>>();
179
template PADDLE_API paddle::platform::complex<double>
180
    *Tensor::mutable_data<paddle::platform::complex<double>>();
181
template PADDLE_API paddle::platform::float16 *
182 183 184 185 186
Tensor::mutable_data<paddle::platform::float16>();

template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  auto inner_place = ConvertExtPlaceToInnerPlace(place);
187 188 189 190
  if (impl_->initialized()) {
    PADDLE_ENFORCE_EQ(
        platform::is_same_place(inner_place, impl_->place()),
        true,
191 192
        pten::errors::Unimplemented("Modification of tensor place through "
                                    "mutable_data is not supported now"));
193 194 195 196 197 198
  }
  if (is_dense_tensor()) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        inner_place);
  }
  return nullptr;
199 200
}

201 202
template PADDLE_API float *Tensor::mutable_data<float>(const PlaceType &place);
template PADDLE_API double *Tensor::mutable_data<double>(
203
    const PlaceType &place);
204
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(
205
    const PlaceType &place);
206
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(
207
    const PlaceType &place);
208
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(
209
    const PlaceType &place);
210
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(
211
    const PlaceType &place);
212
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(
213
    const PlaceType &place);
214 215
template PADDLE_API bool *Tensor::mutable_data<bool>(const PlaceType &place);
template PADDLE_API paddle::platform::complex<float> *
216
Tensor::mutable_data<paddle::platform::complex<float>>(const PlaceType &place);
217
template PADDLE_API paddle::platform::complex<double> *
218
Tensor::mutable_data<paddle::platform::complex<double>>(const PlaceType &place);
219
template PADDLE_API paddle::platform::float16 *
220 221 222 223
Tensor::mutable_data<paddle::platform::float16>(const PlaceType &place);

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
224
  if (is_dense_tensor()) {
225 226
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        ConvertExtPlaceToInnerPlace(place()));
227 228 229 230
  }
  return nullptr;
}

231 232 233 234 235 236 237 238 239
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
template PADDLE_API const paddle::platform::complex<float>
240
    *Tensor::data<paddle::platform::complex<float>>() const;
241
template PADDLE_API const paddle::platform::complex<double>
242
    *Tensor::data<paddle::platform::complex<double>>() const;
243
template PADDLE_API const paddle::platform::float16 *
244
Tensor::data<paddle::platform::float16>() const;
245
template PADDLE_API const paddle::platform::bfloat16 *
246
Tensor::data<paddle::platform::bfloat16>() const;
247 248 249

template <typename T>
T *Tensor::data() {
250
  PADDLE_THROW(pten::errors::Unimplemented(
251 252 253 254 255 256
      "It is not currently supported to directly obtain the modifiable data "
      "address through the tensor::data<T>() method, please use the "
      "tensor::mutable_data<T>() method."));
  return nullptr;
}

257 258 259 260 261 262 263 264 265
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
template PADDLE_API paddle::platform::complex<float>
266
    *Tensor::data<paddle::platform::complex<float>>();
267
template PADDLE_API paddle::platform::complex<double>
268
    *Tensor::data<paddle::platform::complex<double>>();
269
template PADDLE_API paddle::platform::float16 *
270 271
Tensor::data<paddle::platform::float16>();

272
// TODO(chenweihang): replace slice impl by API
273
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
274
  if (is_dense_tensor()) {
275
    return Tensor(std::make_shared<pten::DenseTensor>(
276
        std::move(pten::DenseTensorUtils::Slice(
277
            *(std::dynamic_pointer_cast<pten::DenseTensor>(impl_).get()),
278 279 280
            begin_idx,
            end_idx))));
  } else {
281
    PADDLE_THROW(pten::errors::Unimplemented(
282
        "Only support slice operation on DenseTensor now."));
283
  }
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

std::shared_ptr<pten::TensorBase> Tensor::impl() const { return impl_; }

void Tensor::set_impl(const std::shared_ptr<pten::TensorBase> &impl) {
  impl_ = impl;
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

/* Part 5: Data Transform methods */

template <typename T>
Tensor Tensor::copy_to(const PlaceType &target_place) const {
302
  LOG(WARNING) << "The Tensor's `copy_to` method is deprecated since version "
303
                  "2.3, and will be removed in version 2.4, please use "
304
                  "`copy_to` method without template argument instead. "
305 306
                  "reason: copying a Tensor to another device does not need "
                  "to specify the data type template argument.";
307
  return copy_to(ConvertExtPlaceToBackend(target_place), /*blocking=*/false);
308 309
}

310
template PADDLE_API Tensor
311
Tensor::copy_to<float>(const PlaceType &target_place) const;
312
template PADDLE_API Tensor
313
Tensor::copy_to<double>(const PlaceType &target_place) const;
314
template PADDLE_API Tensor
315
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
316
template PADDLE_API Tensor
317
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
318
template PADDLE_API Tensor
319
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
320
template PADDLE_API Tensor
321
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
322
template PADDLE_API Tensor
323
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
324
template PADDLE_API Tensor
325
Tensor::copy_to<bool>(const PlaceType &target_place) const;
326
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<float>>(
327
    const PlaceType &target_place) const;
328
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<double>>(
329
    const PlaceType &target_place) const;
330
template PADDLE_API Tensor
331 332
Tensor::copy_to<paddle::platform::float16>(const PlaceType &target_place) const;

333 334
Tensor Tensor::copy_to(Backend backend, bool blocking) const {
  return experimental::copy_to(*this, backend, blocking);
335 336
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
void Tensor::copy_(const Tensor &src, bool blocking) {
  if (!src.is_initialized()) {
    return;
  }
  VLOG(3) << "Deep copy Tensor from " << src.name() << " to " << name();
  if (defined()) {
    PADDLE_ENFORCE_EQ(dtype(),
                      src.dtype(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          name(),
                          src.name()));
    PADDLE_ENFORCE_EQ(impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          name(),
                          src.name()));
  }
  auto copy_tensor =
      src.copy_to(pten::TransToPtenBackend(src.inner_place()), blocking);
  set_impl(copy_tensor.impl());
}
362 363
Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
364 365 366 367 368 369
}

/* Part 6: Status utils methods */

bool Tensor::defined() const { return impl_ != nullptr; }

370
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
371 372

bool Tensor::is_initialized() const {
373
  return defined() && impl_->initialized();
374 375 376 377 378 379 380 381 382
}

void Tensor::reset() { impl_.reset(); }

/* Part 7: Operator overloading */

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
383 384
  name_ = x.name_;
  place_ = x.place_;
385 386 387 388 389 390
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
391 392
  name_ = std::move(x.name_);
  place_ = std::move(x.place_);
393 394 395 396 397 398 399 400 401 402 403 404 405 406
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

}  // namespace experimental
}  // namespace paddle