decode.py 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20
import collections

import numpy as np

import paddle

Z
zhiboniu 已提交
21
from ..fluid.layers import dynamic_decode  # noqa: F401
22
from ..fluid.layers.utils import flatten, map_structure
23 24

__all__ = []
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640


class Decoder:
    """
        :api_attr: Static Graph

    Decoder is the base class for any decoder instance used in `dynamic_decode`.
    It provides interface for output generation for one time step, which can be
    used to generate sequences.

    The key abstraction provided by Decoder is:

    1. :code:`(initial_input, initial_state, finished) = initialize(inits)` ,
    which generates the input and state for the first decoding step, and gives the
    initial status telling whether each sequence in the batch is finished.
    It would be called once before the decoding iterations.

    2. :code:`(output, next_state, next_input, finished) = step(time, input, state)` ,
    which transforms the input and state to the output and new state, generates
    input for the next decoding step, and emits the flag indicating finished status.
    It is the main part for each decoding iteration.

    3. :code:`(final_outputs, final_state) = finalize(outputs, final_state, sequence_lengths)` ,
    which revises the outputs(stack of all time steps' output) and final state(state from the
    last decoding step) to get the counterpart for special usage.
    Not necessary to be implemented if no need to revise the stacked outputs and
    state from the last decoding step. If implemented, it would be called after
    the decoding iterations.

    Decoder is more general compared to RNNCell, since the returned `next_input`
    and `finished` make it can determine the input and when to finish by itself
    when used in dynamic decoding. Decoder always wraps a RNNCell instance though
    not necessary.
    """

    def initialize(self, inits):
        r"""
        Called once before the decoding iterations.

        Parameters:
            inits: Argument provided by the caller.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        raise NotImplementedError

    def step(self, time, inputs, states, **kwargs):
        r"""
        Called per step of decoding.

        Parameters:
            time(Tensor): A Tensor with shape :math:`[1]` provided by the caller.
                The data type is int64.
            inputs(Tensor): A (possibly nested structure of) tensor variable[s].
            states(Tensor): A (possibly nested structure of) tensor variable[s].
            **kwargs: Additional keyword arguments, provided by the caller.

        Returns:
            tuple: A tuple( :code:(outputs, next_states, next_inputs, finished)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s], and the structure, shape and \
                data type must be same as the counterpart from input arguments. \
                `outputs` is a (possibly nested structure of) tensor variable[s]. \
                `finished` is a Tensor with bool data type.
        """
        raise NotImplementedError

    def finalize(self, outputs, final_states, sequence_lengths):
        r"""
        Called once after the decoding iterations if implemented.

        Parameters:
            outputs(Tensor): A (possibly nested structure of) tensor variable[s].
                The structure and data type is same as `output_dtype`.
                The tensor stacks all time steps' output thus has shape
                :math:`[time\_step, batch\_size, ...]` , which is done by the caller.
            final_states(Tensor): A (possibly nested structure of) tensor variable[s].
                It is the `next_states` returned by `decoder.step` at last decoding step,
                thus has the same structure, shape and data type with states at any time
                step.

        Returns:
            tuple: A tuple( :code:`(final_outputs, final_states)` ). \
                `final_outputs` and `final_states` both are a (possibly nested \
                structure of) tensor variable[s].
        """
        raise NotImplementedError

    @property
    def tracks_own_finished(self):
        """
        Describes whether the Decoder keeps track of finished states by itself.

        `decoder.step()` would emit a bool `finished` value at each decoding
        step. The emited `finished` can be used to determine whether every
        batch entries is finished directly, or it can be combined with the
        finished tracker keeped in `dynamic_decode` by performing a logical OR
        to take the already finished into account.

        If `False`, the latter would be took when performing `dynamic_decode`,
        which is the default. Otherwise, the former would be took, which uses
        the finished value emited by the decoder as all batch entry finished
        status directly, and it is the case when batch entries might be
        reordered such as beams in BeamSearchDecoder.

        Returns:
            bool: A python bool `False`.
        """
        return False


class BeamSearchDecoder(Decoder):
    """
    Decoder with beam search decoding strategy. It wraps a cell to get probabilities,
    and follows a beam search step to calculate scores and select candidate
    token ids for each decoding step.

    Please refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

    **NOTE** When decoding with beam search, the `inputs` and `states` of cell
    would be tiled to `beam_size` (unsqueeze and tile), resulting to shapes like
    `[batch_size * beam_size, ...]` , which is built into `BeamSearchDecoder` and
    done automatically. Thus any other tensor with shape `[batch_size, ...]` used
    in `cell.call` needs to be tiled manually first, which can be completed by using
    :code:`BeamSearchDecoder.tile_beam_merge_with_batch` . The most common case
    for this is the encoder output in attention mechanism.

    Returns:
        BeamSearchDecoder: An instance of decoder which can be used in \
            `paddle.nn.dynamic_decode` to implement decoding.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)

    """

    def __init__(
        self,
        cell,
        start_token,
        end_token,
        beam_size,
        embedding_fn=None,
        output_fn=None,
    ):
        """
        Constructor of BeamSearchDecoder.

        Parameters:
            cell(RNNCellBase): An instance of `RNNCellBase` or object with the same interface.
            start_token(int): The start token id.
            end_token(int): The end token id.
            beam_size(int): The beam width used in beam search.
            embedding_fn(optional): A callable to apply to selected candidate ids.
                Mostly it is an embedding layer to transform ids to embeddings,
                and the returned value acts as the `input` argument for `cell.call`.
                If not provided, the id to embedding transformation must be built into
                `cell.call`. Default None.
            output_fn(optional): A callable to apply to the cell's output prior to
                calculate scores and select candidate token ids. Default None.
        """
        self.cell = cell
        self.embedding_fn = embedding_fn
        self.output_fn = output_fn
        self.start_token = start_token
        self.end_token = end_token
        self.beam_size = beam_size

    @staticmethod
    def tile_beam_merge_with_batch(x, beam_size):
        r"""
        Tile the batch dimension of a tensor. Specifically, this function takes
        a tensor t shaped `[batch_size, s0, s1, ...]` composed of minibatch
        entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
        `[batch_size * beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, ...]`. The data type
                should be float32, float64, int32, int64 or bool.
            beam_size(int): The beam width used in beam search.

        Returns:
            Tensor: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.
        """
        x = paddle.unsqueeze(x, [1])  # [batch_size, 1, ...]
        expand_times = [1] * len(x.shape)
        expand_times[1] = beam_size
        x = paddle.tile(x, expand_times)  # [batch_size, beam_size, ...]
        x = paddle.transpose(
            x, list(range(2, len(x.shape))) + [0, 1]
        )  # [..., batch_size, beam_size]
        # use 0 to copy to avoid wrong shape
        x = paddle.reshape(
            x, shape=[0] * (len(x.shape) - 2) + [-1]
        )  # [..., batch_size * beam_size]
        x = paddle.transpose(
            x, [len(x.shape) - 1] + list(range(0, len(x.shape) - 1))
        )  # [batch_size * beam_size, ...]
        return x

    def _split_batch_beams(self, x):
        r"""
        Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new
        tensor with shape `[batch_size, beam_size, ...]`.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size * beam_size, ...]`. The
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Tensor: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.
        """
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
        return paddle.reshape(x, shape=[-1, self.beam_size] + list(x.shape[1:]))

    def _merge_batch_beams(self, x):
        r"""
        Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new
        tensor with shape `[batch_size * beam_size, ...]`.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, beam_size, ...]`. The
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Tensor: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.
        """
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
        return paddle.reshape(x, shape=[-1] + list(x.shape[2:]))

    def _expand_to_beam_size(self, x):
        r"""
        This function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed
        of minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a
        shape `[batch_size, beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, ...]`, The data type
                should be float32, float64, int32, int64 or bool.

        Returns:
            Tensor: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.
        """
        x = paddle.unsqueeze(x, [1])
        expand_times = [1] * len(x.shape)
        expand_times[1] = self.beam_size
        x = paddle.tile(x, expand_times)
        return x

    def _mask_probs(self, probs, finished):
        r"""
        Mask log probabilities. It forces finished beams to allocate all probability
        mass to eos and unfinished beams to remain unchanged.

        Parameters:
            probs(Tensor): A tensor with shape `[batch_size, beam_size, vocab_size]`,
                representing the log probabilities. Its data type should be float32 or float64.
            finished(Tensor): A tensor with shape `[batch_size, beam_size]`,
                representing the finished status for all beams. Its data type
                should be bool.

        Returns:
            Tensor: A tensor with the same shape and data type as `x`, \
                where unfinished beams stay unchanged and finished beams are \
                replaced with a tensor with all probability on the EOS token.
        """
        # TODO: use where_op
        finished = paddle.cast(finished, dtype=probs.dtype)

        probs = paddle.multiply(
            paddle.tile(
                paddle.unsqueeze(finished, [2]), [1, 1, self.vocab_size]
            ),
            self.noend_mask_tensor,
        ) - paddle.multiply(probs, (finished - 1).unsqueeze([2]))

        return probs

    def _gather(self, x, indices, batch_size):
        r"""
        Gather from the tensor `x` using `indices`.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, beam_size, ...]`.
            indices(Tensor): A `int64` tensor with shape `[batch_size, beam_size]`,
                representing the indices that we use to gather.
            batch_size(Tensor): A tensor with shape `[1]`. Its data type should
                be int32 or int64.

        Returns:
            Tensor: A tensor with the same shape and data type as `x`, \
                representing the gathered tensor.
        """
        # TODO: compatibility of int32 and int64
        batch_size = (
            paddle.cast(batch_size, indices.dtype)
            if batch_size.dtype != indices.dtype
            else batch_size
        )
        batch_size.stop_gradient = True  # TODO: remove this
        batch_pos = paddle.tile(
            paddle.unsqueeze(
                paddle.arange(0, batch_size, 1, dtype=indices.dtype), [1]
            ),
            [1, self.beam_size],
        )
        topk_coordinates = paddle.stack([batch_pos, indices], axis=2)
        topk_coordinates.stop_gradient = True
        return paddle.gather_nd(x, topk_coordinates)

    class OutputWrapper(
        collections.namedtuple(
            "OutputWrapper", ("scores", "predicted_ids", "parent_ids")
        )
    ):
        """
        The structure for the returned value `outputs` of `decoder.step`.
        A namedtuple includes scores, predicted_ids, parent_ids as fields.
        """

        pass

    class StateWrapper(
        collections.namedtuple(
            "StateWrapper", ("cell_states", "log_probs", "finished", "lengths")
        )
    ):
        """
        The structure for the argument `states` of `decoder.step`.
        A namedtuple includes cell_states, log_probs, finished, lengths as fields.
        """

        pass

    def initialize(self, initial_cell_states):
        r"""
        Initialize the BeamSearchDecoder.

        Parameters:
            initial_cell_states(Tensor): A (possibly nested structure of)
                tensor variable[s]. An argument provided by the caller.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` is a tensor t filled by `start_token` with shape \
                `[batch_size, beam_size]` when `embedding_fn` is None, or the \
                returned value of `embedding_fn(t)` when `embedding_fn` is provided. \
                `initial_states` is a nested structure(namedtuple including cell_states, \
                log_probs, finished, lengths as fields) of tensor variables, where \
                `log_probs, finished, lengths` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, bool, int64`. \
                cell_states has a value with the same structure as the input \
                argument `initial_cell_states` but with tiled shape `[batch_size, beam_size, ...]`. \
                `finished` is a `bool` tensor filled by False with shape `[batch_size, beam_size]`.
        """
        self.kinf = 1e9
        state = flatten(initial_cell_states)[0]
        self.batch_size = paddle.shape(state)[0]

        self.start_token_tensor = paddle.full(
            shape=[1], dtype="int64", fill_value=self.start_token
        )
        self.end_token_tensor = paddle.full(
            shape=[1], dtype="int64", fill_value=self.end_token
        )

        init_cell_states = map_structure(
            self._expand_to_beam_size, initial_cell_states
        )
        init_inputs = paddle.full(
            shape=[self.batch_size, self.beam_size],
            fill_value=self.start_token_tensor,
            dtype=self.start_token_tensor.dtype,
        )
        log_probs = paddle.tile(
            paddle.assign(
                np.array(
                    [[0.0] + [-self.kinf] * (self.beam_size - 1)],
                    dtype="float32",
                )
            ),
            [self.batch_size, 1],
        )
        if paddle.get_default_dtype() == "float64":
            log_probs = paddle.cast(log_probs, "float64")

        init_finished = paddle.full(
            shape=[paddle.shape(state)[0], self.beam_size],
            fill_value=False,
            dtype="bool",
        )

        init_lengths = paddle.zeros_like(init_inputs)
        init_inputs = (
            self.embedding_fn(init_inputs) if self.embedding_fn else init_inputs
        )
        return (
            init_inputs,
            self.StateWrapper(
                init_cell_states, log_probs, init_finished, init_lengths
            ),
            init_finished,
        )

    def _beam_search_step(self, time, logits, next_cell_states, beam_state):
        r"""
        Calculate scores and select candidate token ids.

        Parameters:
            time(Tensor): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            logits(Tensor): A tensor with shape `[batch_size, beam_size, vocab_size]`,
                representing the logits at the current time step. Its data type is float32.
            next_cell_states(Tensor): A (possibly nested structure of) tensor variable[s].
                It has the same structure, shape and data type as the `cell_states` of
                `initial_states` returned by `initialize()`. It represents the next state
                from the cell.
            beam_state(Tensor): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
                `step()` for the others.

        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state)` ). \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`.
                `beam_search_state` has the same structure, shape and data type \
                as the input argument `beam_state`.

        """
        self.vocab_size = logits.shape[-1]
        self.vocab_size_tensor = paddle.full(
            shape=[1], dtype="int64", fill_value=self.vocab_size
        )
        noend_array = [-self.kinf] * self.vocab_size
        noend_array[self.end_token] = 0

        self.noend_mask_tensor = paddle.assign(np.array(noend_array, "float32"))
        if paddle.get_default_dtype() == "float64":
            self.noend_mask_tensor = paddle.cast(
                self.noend_mask_tensor, "float64"
            )

        step_log_probs = paddle.log(paddle.nn.functional.softmax(logits))
        step_log_probs = self._mask_probs(step_log_probs, beam_state.finished)

        log_probs = paddle.add(
            step_log_probs, beam_state.log_probs.unsqueeze([2])
        )

        # TODO: length penalty
        scores = log_probs
        scores = paddle.reshape(scores, [-1, self.beam_size * self.vocab_size])
        # TODO: add grad for topk then this beam search can be used to train
        topk_scores, topk_indices = paddle.topk(x=scores, k=self.beam_size)
        beam_indices = paddle.floor_divide(topk_indices, self.vocab_size_tensor)
        token_indices = paddle.remainder(topk_indices, self.vocab_size_tensor)
        next_log_probs = self._gather(
            paddle.reshape(log_probs, [-1, self.beam_size * self.vocab_size]),
            topk_indices,
            self.batch_size,
        )
        next_cell_states = map_structure(
            lambda x: self._gather(x, beam_indices, self.batch_size),
            next_cell_states,
        )
        next_finished = self._gather(
            beam_state.finished, beam_indices, self.batch_size
        )
        next_lengths = self._gather(
            beam_state.lengths, beam_indices, self.batch_size
        )
        next_lengths = next_lengths + paddle.cast(
            paddle.logical_not(next_finished), beam_state.lengths.dtype
        )
        next_finished = paddle.logical_or(
            next_finished,
            paddle.equal(token_indices, self.end_token_tensor),
        )

        beam_search_output = self.OutputWrapper(
            topk_scores, token_indices, beam_indices
        )
        beam_search_state = self.StateWrapper(
            next_cell_states, next_log_probs, next_finished, next_lengths
        )
        return beam_search_output, beam_search_state

    def step(self, time, inputs, states, **kwargs):
        r"""
        Perform a beam search decoding step, which uses `cell` to get probabilities,
        and follows a beam search step to calculate scores and select candidate
        token ids.

        Parameters:
            time(Tensor): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            inputs(Tensor): A tensor variable. It is same as `initial_inputs`
                returned by `initialize()` for the first decoding step and
                `next_inputs` returned by `step()` for the others.
            states(Tensor): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
                `step()` for the others.
            **kwargs: Additional keyword arguments, provided by the caller.

        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ). \
                `beam_search_state` and `next_inputs` have the same structure, \
                shape and data type as the input arguments `states` and `inputs` separately. \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`. \
                `finished` is a `bool` tensor with shape `[batch_size, beam_size]`.
        """
        inputs = map_structure(self._merge_batch_beams, inputs)
        cell_states = map_structure(self._merge_batch_beams, states.cell_states)
        cell_outputs, next_cell_states = self.cell(
            inputs, cell_states, **kwargs
        )
        cell_outputs = map_structure(self._split_batch_beams, cell_outputs)
        next_cell_states = map_structure(
            self._split_batch_beams, next_cell_states
        )

        if self.output_fn is not None:
            cell_outputs = self.output_fn(cell_outputs)

        beam_search_output, beam_search_state = self._beam_search_step(
            time=time,
            logits=cell_outputs,
            next_cell_states=next_cell_states,
            beam_state=states,
        )
        finished = beam_search_state.finished
        sample_ids = beam_search_output.predicted_ids
        sample_ids.stop_gradient = True
        next_inputs = (
            self.embedding_fn(sample_ids) if self.embedding_fn else sample_ids
        )

        return (beam_search_output, beam_search_state, next_inputs, finished)

    def finalize(self, outputs, final_states, sequence_lengths):
        r"""
        Use `gather_tree` to backtrace along the beam search tree and construct
        the full predicted sequences.

        Parameters:
            outputs(Tensor): A structure(namedtuple) of tensor variables,
                The structure and data type is same as `output_dtype`.
                The tensor stacks all time steps' output thus has shape
                `[time_step, batch_size, ...]`, which is done by the caller.
            final_states(Tensor): A structure(namedtuple) of tensor variables.
                It is the `next_states` returned by `decoder.step` at last
                decoding step, thus has the same structure, shape and data type
                with states at any time step.
            sequence_lengths(Tensor): An `int64` tensor shaped `[batch_size, beam_size]`.
                It contains sequence lengths for each beam determined during
                decoding.

        Returns:
            tuple: A tuple( :code:`(predicted_ids, final_states)` ). \
                `predicted_ids` is an `int64` tensor shaped \
                `[time_step, batch_size, beam_size]`. `final_states` is the same \
                as the input argument `final_states`.
        """
        predicted_ids = paddle.nn.functional.gather_tree(
            outputs.predicted_ids, outputs.parent_ids
        )
        # TODO: use FinalBeamSearchDecoderOutput as output
        return predicted_ids, final_states

    @property
    def tracks_own_finished(self):
        """
        BeamSearchDecoder reorders its beams and their finished state. Thus it
        conflicts with `dynamic_decode` function's tracking of finished states.
        Setting this property to true to avoid early stopping of decoding due
        to mismanagement of the finished state.

        Returns:
            bool: A python bool `True`.
        """
        return True