test_detection.py 14.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
20
import unittest
21 22


23
class TestDetection(unittest.TestCase):
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
39
                shape=[2, 10, 4],
40 41 42 43
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
44
                shape=[2, 10, 20],
45 46 47 48 49
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
            self.assertIsNotNone(out)
50
            self.assertEqual(out.shape[-1], 6)
51
        print(str(program))
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

86
        print(str(program))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
110
        print(str(program))
111 112


113 114
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
131 132


R
ruri 已提交
133 134
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
151 152


153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


171 172
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        program = Program()
        with program_guard(program):
            rpn_rois = layers.data(
                name='rpn_rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[6, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            class_nums = 5
            rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights = fluid.layers.generate_proposal_labels(
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=class_nums)
            assert rois.shape[1] == 4
            assert rois.shape[0] == labels_int32.shape[0]
            assert rois.shape[0] == bbox_targets.shape[0]
            assert rois.shape[0] == bbox_inside_weights.shape[0]
            assert rois.shape[0] == bbox_outside_weights.shape[0]
            assert bbox_targets.shape[1] == 4 * class_nums
            assert bbox_inside_weights.shape[1] == 4 * class_nums
            assert bbox_outside_weights.shape[1] == 4 * class_nums
227 228


C
chengduoZH 已提交
229 230
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
231
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
232
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
233 234 235 236

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
237
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
238 239

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
240 241
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
242 243 244 245 246
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
247

C
chengduoZH 已提交
248
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
249 250
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
251
            num_classes=21,
C
chengduoZH 已提交
252 253 254 255 256 257 258
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
259

C
chengduoZH 已提交
260
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
261 262


263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

278
            map_out = layers.detection_map(detect_res, label, 21)
279 280
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
281
        print(str(program))
282 283


284 285 286 287
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
288 289
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
290 291
            anchor_shape = [50, 4]

292 293 294
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
295 296
                append_batch_size=False,
                dtype='float32')
297 298 299
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
300 301 302 303 304 305 306 307 308 309 310 311
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
312 313 314 315 316 317 318 319 320 321 322 323 324 325
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
                shape=[10],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
J
jerrywgz 已提交
326
            pred_scores, pred_loc, tgt_lbl, tgt_bbox, bbox_inside_weight = layers.rpn_target_assign(
327 328
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
329 330
                anchor_box=anchor_box,
                anchor_var=anchor_var,
331 332 333
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
334
                rpn_batch_size_per_im=256,
335 336
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
337
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
338 339
                rpn_negative_overlap=0.3,
                use_random=False)
340

341 342 343 344
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
345
            self.assertIsNotNone(bbox_inside_weight)
346 347 348
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
349
            print(str(program))
350 351


352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
class TestGenerateProposals(unittest.TestCase):
    def test_generate_proposals(self):
        data_shape = [20, 64, 64]
        images = fluid.layers.data(
            name='images', shape=data_shape, dtype='float32')
        im_info = fluid.layers.data(
            name='im_info', shape=[1, 3], dtype='float32')
        anchors, variances = fluid.layers.anchor_generator(
            name='anchor_generator',
            input=images,
            anchor_sizes=[32, 64],
            aspect_ratios=[1.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        num_anchors = anchors.shape[2]
        scores = fluid.layers.data(
            name='scores', shape=[1, num_anchors, 8, 8], dtype='float32')
        bbox_deltas = fluid.layers.data(
            name='bbox_deltas',
            shape=[1, num_anchors * 4, 8, 8],
            dtype='float32')
        rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
            name='generate_proposals',
            scores=scores,
            bbox_deltas=bbox_deltas,
            im_info=im_info,
            anchors=anchors,
            variances=variances,
            pre_nms_top_n=6000,
            post_nms_top_n=1000,
            nms_thresh=0.5,
            min_size=0.1,
            eta=1.0)
        self.assertIsNotNone(rpn_rois)
        self.assertIsNotNone(rpn_roi_probs)
        print(rpn_rois.shape)


D
dengkaipeng 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
            gtbox = layers.data(name='gtbox', shape=[10, 4], dtype='float32')
            gtlabel = layers.data(name='gtlabel', shape=[10], dtype='int32')
            loss = layers.yolov3_loss(x, gtbox, gtlabel, [10, 13, 30, 13], 10,
                                      0.5)

            self.assertIsNotNone(loss)


404 405
if __name__ == '__main__':
    unittest.main()