ir.cc 8.2 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/ir.h"
16

W
WangZhen 已提交
17
#include <algorithm>
18
#include <memory>
F
flame 已提交
19 20
#include <string>
#include <unordered_map>
W
WangZhen 已提交
21
#include <unordered_set>
22
#include <utility>
23

24 25
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/interface/op_yaml_info.h"
26
#include "paddle/ir/core/block.h"
27
#include "paddle/ir/core/builtin_attribute.h"
28
#include "paddle/ir/core/program.h"
29 30 31
#include "paddle/ir/core/type.h"
#include "paddle/ir/core/value.h"
#include "paddle/phi/core/enforce.h"
F
flame 已提交
32 33 34
#include "pybind11/stl.h"

namespace py = pybind11;
35 36
using ir::Block;
using ir::Operation;
37 38
using ir::OpOperand;
using ir::OpResult;
39
using ir::Program;
40 41 42
using ir::Type;
using ir::Value;
using paddle::dialect::DenseTensorType;
F
flame 已提交
43 44 45 46 47
using pybind11::return_value_policy;

namespace paddle {
namespace pybind {

48 49 50
void BindProgram(py::module *m) {
  py::class_<Program> program(*m, "Program");
  program.def("parameters_num", &Program::parameters_num)
51 52 53 54 55 56
      .def("block",
           py::overload_cast<>(&Program::block),
           return_value_policy::reference)
      .def("block",
           py::overload_cast<>(&Program::block, py::const_),
           return_value_policy::reference)
57 58 59 60 61
      .def("print", [](Program &self) {
        std::ostringstream print_stream;
        self.Print(print_stream);
        LOG(INFO) << print_stream.str();
      });
F
flame 已提交
62
}
63

64 65 66
void BindBlock(py::module *m) {
  py::class_<Block> block(*m, "Block");
  block.def("front", &Block::front, return_value_policy::reference)
67 68 69 70 71 72 73 74 75 76 77
      .def("get_ops",
           [](Block &self) -> py::list {
             py::list op_list;
             for (auto iter = self.begin(); iter != self.end(); iter++) {
               op_list.append(*iter);
             }
             return op_list;
           })
      .def("remove_op", [](Block &self, Operation *op) {
        auto op_iter = std::find(self.begin(), self.end(), op);
        self.erase(op_iter);
78
      });
79 80
}

81 82
void BindOperation(py::module *m) {
  py::class_<Operation> op(*m, "Operation");
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  op.def("name", &Operation::name)
      .def("get_parent", &Operation::GetParent, return_value_policy::reference)
      .def("num_results", &Operation::num_results)
      .def("result", &Operation::result)
      .def("operands",
           [](Operation &self) -> py::list {
             py::list op_list;
             for (uint32_t i = 0; i < self.num_operands(); i++) {
               op_list.append(self.op_operand(i));
             }
             return op_list;
           })
      .def("results",
           [](Operation &self) -> py::list {
             py::list op_list;
             for (uint32_t i = 0; i < self.num_results(); i++) {
               op_list.append(self.result(i));
             }
             return op_list;
           })
      .def("get_input_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto inputs_info = std::get<0>(yaml_interface.GetOpInfo());
             for (auto input_info : inputs_info) {
               op_list.append(input_info.name);
             }
             return op_list;
           })
      .def("get_attr_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto attrs_info = std::get<1>(yaml_interface.GetOpInfo());
             for (auto attr_info : attrs_info) {
               op_list.append(attr_info.name);
             }
             return op_list;
           })
      .def("get_output_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto outputs_info = std::get<2>(yaml_interface.GetOpInfo());
             for (auto output_info : outputs_info) {
               op_list.append(output_info.name);
             }
             return op_list;
           })
      .def("replace_all_uses_with",
           [](Operation &self, const std::vector<OpResult> &op_results) {
             self.ReplaceAllUsesWith(op_results);
           });
}

void BindValue(py::module *m) {
  py::class_<Value> value(*m, "Value");
  value.def(
      "get_defining_op", &Value::GetDefiningOp, return_value_policy::reference);
}

void BindOpOperand(py::module *m) {
  py::class_<OpOperand> op_operand(*m, "OpOperand");
  op_operand.def("source", &OpOperand::source)
      .def("set_source", &OpOperand::set_source);
}

void BindOpResult(py::module *m) {
  py::class_<OpResult> op_result(*m, "OpResult");
  op_result
      .def("get_defining_op",
           &OpResult::GetDefiningOp,
           return_value_policy::reference)
      .def("use_empty", &OpResult::use_empty)
      .def("type", &OpResult::type)
      .def("set_stop_gradient",
           [](OpResult &self, bool stop_gradient) {
             auto *defining_op = self.owner();
             std::vector<ir::Attribute> stop_gradients;
             if (defining_op->HasAttribute(kAttrStopGradients)) {
               stop_gradients = defining_op->attribute(kAttrStopGradients)
                                    .dyn_cast<ir::ArrayAttribute>()
                                    .AsVector();
             } else {
               stop_gradients = std::vector<ir::Attribute>(
                   defining_op->num_results(),
                   ir::BoolAttribute::get(ir::IrContext::Instance(), false));
             }
             stop_gradients[self.GetResultIndex()] = ir::BoolAttribute::get(
                 ir::IrContext::Instance(), stop_gradient);
             defining_op->set_attribute(
                 kAttrStopGradients,
                 ir::ArrayAttribute::get(ir::IrContext::Instance(),
                                         stop_gradients));
           })
      .def("get_stop_gradient", [](OpResult &self) {
        auto *defining_op = self.owner();
        if (defining_op->HasAttribute(kAttrStopGradients)) {
          auto stop_gradients = defining_op->attribute(kAttrStopGradients)
                                    .dyn_cast<ir::ArrayAttribute>()
                                    .AsVector();
          return stop_gradients[self.GetResultIndex()]
              .dyn_cast<ir::BoolAttribute>()
              .data();
        } else {
          return false;
        }
      });
}

void BindType(py::module *m) {
  py::class_<Type> ir_type(*m, "Type");
  ir_type.def("__eq__", [](Type &self, Type &other) { return self == other; })
      .def("print", [](Type &self) { LOG(INFO) << self; });
}

void BindUtils(pybind11::module *m) {
  m->def("get_op_result_shape", [](const OpResult &op_result) {
    if (op_result.type().isa<DenseTensorType>()) {
      return phi::vectorize(
          op_result.type().dyn_cast<DenseTensorType>().dims());
    } else {
      PADDLE_THROW(phi::errors::InvalidArgument(
          "get_op_result_shape currently only support op_result that is a "
          "DenseTensorType"));
    }
  });
  m->def("get_op_result_dtype", [](const OpResult &op_result) {
    if (op_result.type().isa<DenseTensorType>()) {
      return op_result.type().dyn_cast<DenseTensorType>().dtype();
    } else {
      PADDLE_THROW(phi::errors::InvalidArgument(
          "get_op_result_dtype currently only support op_result that is a "
          "DenseTensorType"));
    }
  });
223 224
}

225 226 227 228
void BindNewIR(pybind11::module *m) {
  BindProgram(m);
  BindBlock(m);
  BindOperation(m);
229 230 231 232 233
  BindValue(m);
  BindOpOperand(m);
  BindOpResult(m);
  BindType(m);
  BindUtils(m);
234 235
}

F
flame 已提交
236 237
}  // namespace pybind
}  // namespace paddle