adamax.py 11.2 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
19
from paddle import _C_ops
M
MRXLT 已提交
20

21 22
__all__ = []

M
MRXLT 已提交
23 24

class Adamax(Optimizer):
25
    r"""
M
MRXLT 已提交
26 27 28 29 30 31 32 33 34 35 36
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.

    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

37
        moment\_out & = {\beta}_1 * moment + (1 - {\beta}_1) * grad
M
MRXLT 已提交
38

39
        inf\_norm\_out & = max({\beta}_2 * inf\_norm + \epsilon, |grad|)
M
MRXLT 已提交
40

41
        learning\_rate & = \frac{learning\_rate}{1 - {\beta}_1^t}
M
MRXLT 已提交
42

43
        param\_out & = param - learning\_rate * \frac{moment\_out}{inf\_norm\_out}
M
MRXLT 已提交
44 45 46 47 48 49 50

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
51 52
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
53 54 55 56 57 58
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
59 60 61 62 63 64 65 66 67 68 69 70 71
	parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
	    This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
	    The default value is None in static mode, at this time all parameters will be updated.
	weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
	    It canbe a float value as coeff of L2 regularization or \
	    :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
	    If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
	    the regularization setting here in optimizer will be ignored for this parameter. \
	    Otherwise, the regularization setting here in optimizer will take effect. \
	    Default None, meaning there is no regularization.
M
MRXLT 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, Adamax doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
C
Chen Long 已提交
85
            
M
MRXLT 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            import paddle
            import numpy as np

            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adamax(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adamax(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
                beta1=0.9)                   
            out.backward()
            adam.step()
            adam.clear_grad()
M
MRXLT 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
    _beta1_pow_acc_str = "beta1_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None):
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
M
MRXLT 已提交
148 149 150 151 152 153
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
M
MRXLT 已提交
154 155 156 157 158 159 160 161 162 163
        super(Adamax, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name)
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
164 165 166 167 168
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon
        }
M
MRXLT 已提交
169 170

    def _create_accumulators(self, block, parameters):
171 172 173
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

M
MRXLT 已提交
174 175 176 177 178 179 180 181 182 183 184 185
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
186 187
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
188 189 190 191 192 193

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

        if framework._non_static_mode():
            _C_ops.adamax(param_and_grad[0], param_and_grad[1],
                          self._create_param_lr(param_and_grad), moment,
                          inf_norm, beta1_pow_acc, param_and_grad[0], moment,
                          inf_norm, "beta1", self._beta1, "beta2", self._beta2,
                          "epsilon", self._epsilon)
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
                    "Beta1Pow": beta1_pow_acc
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
                    "InfNormOut": inf_norm
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
                    "epsilon": self._epsilon
                },
                stop_gradient=True)

            return adamax_op
M
MRXLT 已提交
226 227 228 229 230

    def _finish_update(self, block, parameters_and_grads):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        if isinstance(parameters_and_grads, list):
            for param, grad in parameters_and_grads:
                if grad is None or param.stop_gradient is True:
                    continue
                with param.block.program._optimized_guard(
                    [param, grad]), name_scope('adamax'):
                    beta1_pow_acc = self._get_accumulator(
                        self._beta1_pow_acc_str, param)
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True)
        else:
            for param, grad in parameters_and_grads['params']:
                if grad is None or param.stop_gradient is True:
                    continue
                with param.block.program._optimized_guard(
                    [param, grad]), name_scope('adamax'):
                    beta1_pow_acc = self._get_accumulator(
                        self._beta1_pow_acc_str, param)
                    self._beta1 = parameters_and_grads.get(
                        'beta1', self._default_dict['beta1'])
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True)

    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        parameters = parameters.get('params')
        return parameters