test_fuse_optimizer_pass.py 6.8 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
Leo Chen 已提交
14

15 16
from simple_nets import simple_fc_net, fc_with_batchnorm, init_data, bow_net
from fake_reader import fake_imdb_reader
17
from parallel_executor_test_base import TestParallelExecutorBase, DeviceType
18 19
from functools import partial
import paddle
C
chengduo 已提交
20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.core as core
import unittest
import os


26
class TestFuseOptimizationOps(TestParallelExecutorBase):
C
chengduo 已提交
27 28 29 30
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

31 32 33 34
    def _get_feed_dict(self):
        img, label = init_data()
        return {"image": img, "label": label}

C
chengduo 已提交
35 36
    def _compare_fused_optimizer_ops(self,
                                     model,
37
                                     use_device,
38 39
                                     feed_dict=None,
                                     get_data_from_feeder=None,
C
chengduo 已提交
40
                                     optimizer=fluid.optimizer.Adam):
41
        if use_device == DeviceType.CUDA and not core.is_compiled_with_cuda():
C
chengduo 已提交
42
            return
43

C
chengduo 已提交
44 45
        not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence(
            model,
C
chengduo 已提交
46
            feed_dict=feed_dict,
47
            get_data_from_feeder=get_data_from_feeder,
48
            use_device=use_device,
C
chengduo 已提交
49 50 51 52
            fuse_all_optimizer_ops=False,
            optimizer=optimizer)
        fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence(
            model,
C
chengduo 已提交
53
            feed_dict=feed_dict,
54
            get_data_from_feeder=get_data_from_feeder,
55
            use_device=use_device,
C
chengduo 已提交
56 57 58 59 60 61 62 63
            fuse_all_optimizer_ops=True,
            optimizer=optimizer)

        for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
        for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)

64 65
    def _decorate_compare_fused_optimizer_ops(self, model, use_device,
                                              optimizer):
66 67
        self._compare_fused_optimizer_ops(
            model,
68
            use_device,
69 70 71 72 73 74 75 76
            feed_dict=self._get_feed_dict(),
            optimizer=optimizer)


class TestFuseAdamOps(TestFuseOptimizationOps):
    def optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.Adam(learning_rate=learning_rate)

C
chengduo 已提交
77
    def test_batchnorm_fc_with_fuse_op(self):
78
        self._decorate_compare_fused_optimizer_ops(
79
            fc_with_batchnorm, DeviceType.CUDA, optimizer=self.optimizer)
80
        self._decorate_compare_fused_optimizer_ops(
81
            fc_with_batchnorm, DeviceType.CPU, optimizer=self.optimizer)
C
chengduo 已提交
82 83 84


class TestFuseSGDOps(TestFuseAdamOps):
85
    def optimizer(self, learning_rate=1e-3):
C
chengduo 已提交
86 87 88
        return fluid.optimizer.SGD(learning_rate=learning_rate)


C
chengduo 已提交
89
class TestFuseMomentumOps(TestFuseAdamOps):
90
    def optimizer(self, learning_rate=1e-3):
C
chengduo 已提交
91 92 93 94
        return fluid.optimizer.Momentum(
            learning_rate=learning_rate, momentum=0.1)


95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class TestSpareFuseAdamOps(TestFuseOptimizationOps):
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)
        cls.word_dict_len = 5147
        batch_size = 64
        reader = fake_imdb_reader(cls.word_dict_len, batch_size * 100)
        reader = paddle.batch(reader, batch_size=batch_size)()
        cls.train_data = next(reader)

    def _get_data_from_feeder(self):
        place = fluid.CPUPlace()
        feeder = fluid.DataFeeder(feed_list=["words", "label"], place=place)
        return feeder.feed(self.train_data)

110 111
    def _decorate_compare_fused_optimizer_ops(self, model, use_device,
                                              optimizer):
C
chengduo 已提交
112
        self._compare_fused_optimizer_ops(
113
            model,
114
            use_device,
115 116 117 118 119 120 121 122 123
            get_data_from_feeder=self._get_data_from_feeder,
            optimizer=optimizer)

    def optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.Adam(learning_rate=learning_rate)

    def test_simple_bow_net_with_fuse_op(self):
        model = partial(bow_net, dict_dim=self.word_dict_len, is_sparse=True)
        self._decorate_compare_fused_optimizer_ops(
124
            model, DeviceType.CUDA, optimizer=self.optimizer)
125
        self._decorate_compare_fused_optimizer_ops(
126
            model, DeviceType.CPU, optimizer=self.optimizer)
127 128 129 130 131 132 133 134 135 136 137


class TestSpareFuseSGDOps(TestSpareFuseAdamOps):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.SGD(learning_rate=learning_rate)


class TestSpareFuseMomentumOps(TestSpareFuseAdamOps):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.Momentum(
            learning_rate=learning_rate, momentum=0.1)
C
chengduo 已提交
138 139


140 141 142
class TestPassConflictBase(TestFuseAdamOps):
    def _compare_fused_optimizer_ops(self,
                                     model,
143
                                     use_device,
144 145 146
                                     feed_dict=None,
                                     get_data_from_feeder=None,
                                     optimizer=fluid.optimizer.Adam):
147
        if use_device == DeviceType.CUDA and not core.is_compiled_with_cuda():
148 149 150 151 152 153
            return

        self.check_pass_conflict(
            model,
            feed_dict=feed_dict,
            get_data_from_feeder=get_data_from_feeder,
154
            use_device=use_device,
155 156 157 158 159 160 161 162 163 164 165
            fuse_all_optimizer_ops=True,
            optimizer=optimizer,
            enable_sequential_execution=True)


class TestFuseAdamOpsPassConflict(TestPassConflictBase):
    def optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.Adam(learning_rate=learning_rate)

    def test_batchnorm_fc_with_fuse_op(self):
        self._decorate_compare_fused_optimizer_ops(
166
            fc_with_batchnorm, DeviceType.CPU, optimizer=self.optimizer)
167
        self._decorate_compare_fused_optimizer_ops(
168
            fc_with_batchnorm, DeviceType.CUDA, optimizer=self.optimizer)
169 170 171 172 173 174 175 176 177 178 179 180 181


class TestFuseSGDOpsPassConflict(TestFuseAdamOpsPassConflict):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.SGD(learning_rate=learning_rate)


class TestFuseMomentumOpsPassConflict(TestFuseAdamOpsPassConflict):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.Momentum(
            learning_rate=learning_rate, momentum=0.1)


C
chengduo 已提交
182 183
if __name__ == '__main__':
    unittest.main()