test_elementwise_heaviside_op.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_heaviside"
        x = np.random.random((13, 17)).astype("float64")
        y = np.random.random((13, 17)).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


class TestHeavisideBroadcast(unittest.TestCase):
    def setUp(self):
        self.input_1 = np.random.rand(2, 100, 13, 17).astype("float32")
        self.input_2 = np.random.rand(100, 13, 17).astype("float32")
        self.input_3 = np.random.rand(100, 13, 1).astype("float32")
        self.input_4 = np.random.rand(13, 17).astype("float32")
        self.input_5 = np.random.rand(1).astype("float32")

        self.np_expected1 = np.heaviside(self.input_1, self.input_2)
        self.np_expected2 = np.heaviside(self.input_2, self.input_3)
        self.np_expected3 = np.heaviside(self.input_2, self.input_4)
        self.np_expected4 = np.heaviside(self.input_4, self.input_5)

    def test_broadcast(self):
        paddle.disable_static()
        self.tensor_1 = paddle.to_tensor(self.input_1)
        self.tensor_2 = paddle.to_tensor(self.input_2)
        self.tensor_3 = paddle.to_tensor(self.input_3)
        self.tensor_4 = paddle.to_tensor(self.input_4)
        self.tensor_5 = paddle.to_tensor(self.input_5)

        res = paddle.heaviside(self.tensor_1, self.tensor_2)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected1))

        res = paddle.heaviside(self.tensor_2, self.tensor_3)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected2))

        res = paddle.heaviside(self.tensor_2, self.tensor_4)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected3))

        res = paddle.heaviside(self.tensor_4, self.tensor_5)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected4))


class TestHeavisideAPI_float64(unittest.TestCase):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float64")
        self.y_np = np.random.random((13, 17)).astype("float64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float64"

    def test_static(self):
        for use_cuda in ([False, True]
                         if paddle.device.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
            prog = paddle.static.Program()
            with paddle.static.program_guard(prog):
                x = paddle.static.data(
                    name=f"x_{self.dtype}", shape=[13, 17], dtype=self.dtype)
                y = paddle.static.data(
                    name=f"y_{self.dtype}", shape=[13, 17], dtype=self.dtype)
                out = paddle.heaviside(x, y)

            exe = paddle.static.Executor(place=place)
            res = exe.run(prog,
                          feed={
                              f"x_{self.dtype}": self.x_np,
                              f"y_{self.dtype}": self.y_np
                          },
                          fetch_list=out,
                          use_prune=True)

            self.assertTrue(np.allclose(res, self.out_np))

    def test_dygraph(self):
        for use_cuda in ([False, True]
                         if paddle.device.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
            result = paddle.heaviside(
                paddle.to_tensor(self.x_np), paddle.to_tensor(self.y_np))

            self.assertTrue(np.allclose(result.numpy(), self.out_np))


class TestHeavisideAPI_float32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float32")
        self.y_np = np.random.random((13, 17)).astype("float32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float32"


class TestHeavisideAPI_int64(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int64")
        self.y_np = np.random.random((13, 17)).astype("int64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int64"


class TestHeavisideAPI_int32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int32")
        self.y_np = np.random.random((13, 17)).astype("int32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int32"


class TestHeavisideError(unittest.TestCase):
    def test_input(self):
        paddle.disable_static()

        def test_input_x():
            paddle.heaviside(1, paddle.randn([100]))

        self.assertRaises(ValueError, test_input_x)

        def test_input_y():
            paddle.heaviside(paddle.randn([100]), 1)

        self.assertRaises(ValueError, test_input_y)

        def test_input_xy():
            paddle.heaviside(
                paddle.randn([100], 'float32'), paddle.randn([100], 'float64'))

        self.assertRaises(ValueError, test_input_xy)


if __name__ == '__main__':
    unittest.main()