test_conv3d_transpose_op.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

K
Kaipeng Deng 已提交
20 21
import paddle
paddle.enable_static()
22
import paddle.fluid.core as core
23
import paddle.fluid as fluid
24
from op_test import OpTest
C
chengduoZH 已提交
25 26


C
chengduoZH 已提交
27
def conv3dtranspose_forward_naive(input_, filter_, attrs):
28 29 30 31 32 33 34 35
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 4, 1, 2, 3])
C
chengduoZH 已提交
36
    in_n, in_c, in_d, in_h, in_w = input_.shape
37 38
    f_c, f_out_c, f_d, f_h, f_w = filter_.shape
    groups = attrs['groups']
C
chengduoZH 已提交
39
    assert in_c == f_c
40
    out_c = f_out_c * groups
M
minqiyang 已提交
41
    sub_in_c = in_c // groups
C
chengduoZH 已提交
42

C
chengduoZH 已提交
43 44 45
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(
                input_shape, kernel_size, kernel_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
63 64
        dilations = [1, 1, 1]
        input_data_shape = input_.shape[2:5]
65 66 67 68 69 70 71 72 73 74
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

C
chengduoZH 已提交
75 76 77 78 79 80
    d_bolck_d = dilations[0] * (f_d - 1) + 1
    d_bolck_h = dilations[1] * (f_h - 1) + 1
    d_bolck_w = dilations[2] * (f_w - 1) + 1
    out_d = (in_d - 1) * stride[0] + d_bolck_d
    out_h = (in_h - 1) * stride[1] + d_bolck_h
    out_w = (in_w - 1) * stride[2] + d_bolck_w
C
chengduoZH 已提交
81 82 83 84 85 86
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

    for n in range(in_n):
        for d in range(in_d):
            for i in range(in_h):
                for j in range(in_w):
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
                    for g in range(groups):
                        input_masked = input_[n, g * sub_in_c:(g + 1
                                                               ) * sub_in_c, d,
                                              i, j]  # (c)
                        input_masked = np.reshape(input_masked,
                                                  (sub_in_c, 1, 1, 1))
                        input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))

                        for k in range(f_out_c):
                            tmp_out = np.sum(input_masked * filter_[
                                g * sub_in_c:(g + 1) * sub_in_c, k, :, :, :],
                                             axis=0)
                            d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
                            i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
                            j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
                            out[n, g * f_out_c + k, d1:d2:dilations[0], i1:i2:
                                dilations[1], j1:j2:dilations[2]] += tmp_out
C
chengduoZH 已提交
104

105 106 107 108
    out = out[:, :, pad_d_0:out_d - pad_d_1, pad_h_0:out_h - pad_h_1, pad_w_0:
              out_w - pad_w_1]
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 4, 1])
C
chengduoZH 已提交
109 110 111
    return out


C
cnn 已提交
112
class TestConv3DTransposeOp(OpTest):
C
chengduoZH 已提交
113 114
    def setUp(self):
        # init as conv transpose
115
        self.use_cudnn = False
116 117
        self.check_no_input = False
        self.check_no_filter = False
118 119 120
        self.data_format = 'NCHW'
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129 130
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
131
            'padding_algorithm': self.padding_algorithm,
132
            'dilations': self.dilations,
133
            'groups': self.groups,
134
            'use_cudnn': self.use_cudnn,
135
            'data_format': self.data_format
C
chengduoZH 已提交
136
        }
C
chengduoZH 已提交
137 138 139 140

        output = conv3dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype("float32")

C
chengduoZH 已提交
141 142 143
        self.outputs = {'Output': output}

    def test_check_output(self):
144 145 146 147 148
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
149 150

    def test_check_grad(self):
151 152 153 154 155 156 157 158 159 160
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.03)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
161 162

    def test_check_grad_no_filter(self):
163 164 165 166 167 168 169
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
170
        elif self.check_no_filter:
171 172 173 174 175
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
C
chengduoZH 已提交
176 177

    def test_check_grad_no_input(self):
178 179 180 181 182 183 184
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
185
        elif self.check_no_input:
186 187 188 189 190
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
C
chengduoZH 已提交
191 192 193 194 195

    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
196
        self.groups = 1
C
chengduoZH 已提交
197
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
198 199 200 201
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
C
chengduoZH 已提交
202
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
203 204


C
cnn 已提交
205
class TestWithSymmetricPad(TestConv3DTransposeOp):
C
chengduoZH 已提交
206
    def init_test_case(self):
207
        self.check_no_input = True
C
chengduoZH 已提交
208 209 210
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
211
        self.groups = 1
K
Kaipeng Deng 已提交
212
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
213 214 215 216
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
cnn 已提交
217
class TestWithAsymmetricPad(TestConv3DTransposeOp):
218 219 220 221 222
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 1, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
223
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
224 225 226 227
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
cnn 已提交
228
class TestWithSAMEPad(TestConv3DTransposeOp):
229
    def init_test_case(self):
230 231
        self.stride = [1, 1, 2]
        self.dilations = [1, 2, 1]
232
        self.groups = 1
K
Kaipeng Deng 已提交
233
        self.input_size = [1, 2, 5, 5, 6]  # NCDHW
234
        f_c = self.input_size[1]
235
        self.filter_size = [f_c, 6, 3, 3, 4]
236 237 238
        self.padding_algorithm = 'SAME'


C
cnn 已提交
239
class TestWithVALIDPad(TestConv3DTransposeOp):
240
    def init_test_case(self):
241
        self.stride = [2, 1, 1]
242 243
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
244
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
245
        f_c = self.input_size[1]
246
        self.filter_size = [f_c, 6, 3, 4, 3]
247 248 249
        self.padding_algorithm = 'VALID'


C
cnn 已提交
250
class TestWithStride(TestConv3DTransposeOp):
251
    def init_test_case(self):
252
        self.check_no_filter = True
253
        self.pad = [1, 1, 1]
254
        self.stride = [2, 2, 2]
255
        self.dilations = [1, 1, 1]
256
        self.groups = 1
K
Kaipeng Deng 已提交
257
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
258
        f_c = self.input_size[1]
259
        self.filter_size = [f_c, 6, 3, 3, 3]
260 261


C
cnn 已提交
262
class TestWithGroups(TestConv3DTransposeOp):
C
chengduoZH 已提交
263 264
    def init_test_case(self):
        self.pad = [1, 1, 1]
265
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
266
        self.dilations = [1, 1, 1]
267
        self.groups = 2
K
Kaipeng Deng 已提交
268
        self.input_size = [1, 2, 5, 5, 5]  # NCHW
C
chengduoZH 已提交
269
        f_c = self.input_size[1]
270
        self.filter_size = [f_c, 3, 3, 3, 3]
C
chengduoZH 已提交
271 272


C
cnn 已提交
273
class TestWithDilation(TestConv3DTransposeOp):
C
chengduoZH 已提交
274 275 276 277
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [2, 2, 2]
278
        self.groups = 1
K
Kaipeng Deng 已提交
279
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
280 281 282 283
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
cnn 已提交
284
class Test_NHWC(TestConv3DTransposeOp):
285 286 287 288 289
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
290
        self.input_size = [1, 5, 5, 5, 2]  # NDHWC
291 292 293 294 295
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
296
# ------------ test_cudnn ------------
297 298
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
299
class TestCUDNN(TestConv3DTransposeOp):
C
chengduoZH 已提交
300
    def init_op_type(self):
301 302
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
303 304


305 306
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
307
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
C
chengduoZH 已提交
308 309 310 311
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
312
        self.groups = 1
K
Kaipeng Deng 已提交
313
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
314 315 316 317
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
318 319
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
320 321


322 323 324 325 326 327 328 329
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
330
        self.input_size = [1, 2, 4, 4, 4]  # NCDHW
331 332 333 334 335 336 337 338 339 340 341 342
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
    def init_test_case(self):
343 344
        self.stride = [1, 1, 2]
        self.dilations = [1, 2, 1]
345
        self.groups = 1
K
Kaipeng Deng 已提交
346
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
347
        f_c = self.input_size[1]
348
        self.filter_size = [f_c, 6, 3, 4, 3]
349 350 351 352 353 354 355 356 357 358 359 360 361 362
        self.padding_algorithm = 'SAME'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
363
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
364 365 366 367 368 369 370 371 372
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.padding_algorithm = 'VALID'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


373 374
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
375
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
376 377 378 379
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
380
        self.groups = 1
K
Kaipeng Deng 已提交
381
        self.input_size = [1, 2, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
382 383 384 385
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
386 387
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
388 389


390 391
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
392 393 394 395 396 397
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
K
Kaipeng Deng 已提交
398
        self.input_size = [1, 2, 5, 5, 5]  # NCHW
399 400 401 402 403 404 405 406
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


407 408
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
409
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
410 411 412 413 414 415 416 417 418
#     def init_test_case(self):
#         self.pad = [1, 1, 1]
#         self.stride = [2, 2, 2]
#         self.dilations = [2, 2, 2]
#         self.input_size = [2, 3, 5, 5, 5]  # NCDHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3, 3]
#
#     def init_op_type(self):
419
#         self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
420

421 422 423

@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
424
class TestCUDNN_NHWC(TestConv3DTransposeOp):
425 426 427 428 429
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
430
        self.input_size = [1, 5, 5, 5, 2]  # NDHWC
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
448
        self.input_size = [1, 5, 5, 5, 2]  # NDHWC
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
466
        self.input_size = [1, 5, 5, 5, 2]  # NDHWC
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.groups = 1
K
Kaipeng Deng 已提交
484
        self.input_size = [1, 5, 5, 5, 2]  # NDHWC
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.groups = 2
K
Kaipeng Deng 已提交
502
        self.input_size = [1, 5, 5, 5, 2]  # NDHWC
503 504 505 506 507 508 509 510 511
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"


C
chengduoZH 已提交
512 513
if __name__ == '__main__':
    unittest.main()