test_bipartite_match_op.py 5.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15

from __future__ import print_function
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19 20


21
def bipartite_match(distance, match_indices, match_dist):
22 23 24 25 26
    """Bipartite Matching algorithm.
    Arg:
        distance (numpy.array) : The distance of two entries with shape [M, N].
        match_indices (numpy.array): the matched indices from column to row
            with shape [1, N], it must be initialized to -1.
27
        match_dist (numpy.array): The matched distance from column to row
28 29 30 31 32 33 34 35 36 37 38 39 40
            with shape [1, N], it must be initialized to 0.
    """
    match_pair = []
    row, col = distance.shape
    for i in range(row):
        for j in range(col):
            match_pair.append((i, j, distance[i][j]))

    match_sorted = sorted(match_pair, key=lambda tup: tup[2], reverse=True)

    row_indices = -1 * np.ones((row, ), dtype=np.int)

    idx = 0
41
    for i, j, dist in match_sorted:
42 43
        if idx >= row:
            break
44
        if match_indices[j] == -1 and row_indices[i] == -1 and dist > 0:
45 46
            match_indices[j] = i
            row_indices[i] = j
47
            match_dist[j] = dist
48 49 50
            idx += 1


51 52
def argmax_match(distance, match_indices, match_dist, threshold):
    r, c = distance.shape
53
    for j in range(c):
54 55 56 57 58 59 60 61 62 63 64
        if match_indices[j] != -1:
            continue
        col_dist = distance[:, j]
        indices = np.argwhere(col_dist >= threshold).flatten()
        if len(indices) < 1:
            continue
        match_indices[j] = indices[np.argmax(col_dist[indices])]
        match_dist[j] = col_dist[match_indices[j]]


def batch_bipartite_match(distance, lod, match_type=None, dist_threshold=None):
65 66 67
    """Bipartite Matching algorithm for batch input.
    Arg:
        distance (numpy.array) : The distance of two entries with shape [M, N].
68
        lod (list of int): The length of each input in this batch.
69
    """
70
    n = len(lod)
71 72
    m = distance.shape[1]
    match_indices = -1 * np.ones((n, m), dtype=np.int)
73
    match_dist = np.zeros((n, m), dtype=np.float32)
74 75
    cur_offset = 0
    for i in range(n):
76
        if lod[i] == 0: continue
77 78
        bipartite_match(distance[cur_offset:(cur_offset + lod[i]), :],
                        match_indices[i, :], match_dist[i, :])
79
        if match_type == 'per_prediction':
80 81 82
            argmax_match(distance[cur_offset:(cur_offset + lod[i]), :],
                         match_indices[i, :], match_dist[i, :], dist_threshold)
        cur_offset += lod[i]
83
    return match_indices, match_dist
84 85


86
class TestBipartiteMatchOpWithLoD(OpTest):
87 88
    def setUp(self):
        self.op_type = 'bipartite_match'
89
        lod = [[5, 6, 12]]
90 91
        dist = np.random.random((23, 217)).astype('float32')
        match_indices, match_dist = batch_bipartite_match(dist, lod[0])
92

93
        self.inputs = {'DistMat': (dist, lod)}
94
        self.outputs = {
95 96
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_dist,
97 98 99 100 101 102 103 104 105
        }

    def test_check_output(self):
        self.check_output()


class TestBipartiteMatchOpWithoutLoD(OpTest):
    def setUp(self):
        self.op_type = 'bipartite_match'
106
        lod = [[8]]
107 108
        dist = np.random.random((8, 17)).astype('float32')
        match_indices, match_dist = batch_bipartite_match(dist, lod[0])
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

        self.inputs = {'DistMat': dist}
        self.outputs = {
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_dist,
        }

    def test_check_output(self):
        self.check_output()


class TestBipartiteMatchOpWithoutLoDLargeScaleInput(OpTest):
    def setUp(self):
        self.op_type = 'bipartite_match'
        lod = [[300]]
        dist = np.random.random((300, 17)).astype('float32')
        match_indices, match_dist = batch_bipartite_match(dist, lod[0])
126

127
        self.inputs = {'DistMat': dist}
128
        self.outputs = {
129
            'ColToRowMatchIndices': match_indices,
D
dangqingqing 已提交
130
            'ColToRowMatchDist': match_dist,
131 132 133 134 135 136
        }

    def test_check_output(self):
        self.check_output()


137 138 139
class TestBipartiteMatchOpWithPerPredictionType(OpTest):
    def setUp(self):
        self.op_type = 'bipartite_match'
140
        lod = [[5, 6, 12]]
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        dist = np.random.random((23, 237)).astype('float32')
        match_indices, match_dist = batch_bipartite_match(dist, lod[0],
                                                          'per_prediction', 0.5)

        self.inputs = {'DistMat': (dist, lod)}
        self.outputs = {
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_dist,
        }
        self.attrs = {
            'match_type': 'per_prediction',
            'dist_threshold': 0.5,
        }

    def test_check_output(self):
        self.check_output()


159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
class TestBipartiteMatchOpWithEmptyLoD(OpTest):
    def setUp(self):
        self.op_type = 'bipartite_match'
        lod = [[5, 6, 0, 12]]
        dist = np.random.random((23, 217)).astype('float32')
        match_indices, match_dist = batch_bipartite_match(dist, lod[0])

        self.inputs = {'DistMat': (dist, lod)}
        self.outputs = {
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_dist,
        }

    def test_check_output(self):
        self.check_output()


176 177
if __name__ == '__main__':
    unittest.main()