test_assign_op.py 9.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
18
import numpy as np
Y
Yu Yang 已提交
19
import unittest
20
import paddle
21 22 23 24
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
25
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
26 27 28 29


class TestAssignOp(op_test.OpTest):
    def setUp(self):
C
chentianyu03 已提交
30
        self.python_api = paddle.assign
Y
Yu Yang 已提交
31
        self.op_type = "assign"
32
        x = np.random.random(size=(100, 10)).astype('float64')
Y
Yu Yang 已提交
33 34 35 36
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
37
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
38
        self.check_output(check_eager=True)
39
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Y
Yu Yang 已提交
40 41

    def test_backward(self):
42
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
43
        self.check_grad(['X'], 'Out', check_eager=True)
44
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Y
Yu Yang 已提交
45 46


47 48
class TestAssignFP16Op(op_test.OpTest):
    def setUp(self):
C
chentianyu03 已提交
49
        self.python_api = paddle.assign
50 51 52 53 54 55
        self.op_type = "assign"
        x = np.random.random(size=(100, 10)).astype('float16')
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
56
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
57
        self.check_output(check_eager=True)
58
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
59 60

    def test_backward(self):
61
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
62
        self.check_grad(['X'], 'Out', check_eager=True)
63
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
64 65


66 67
class TestAssignOpWithLoDTensorArray(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
68
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
69 70 71 72 73 74 75 76 77 78 79 80 81 82
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1)
            z = fluid.layers.elementwise_add(x=x, y=y)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = fluid.layers.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
            mean = fluid.layers.mean(sums)
            append_backward(mean)
83
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
84 85 86 87 88 89 90 91 92 93 94 95 96 97

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
        res = exe.run(main_program,
                      feed={'x': feed_x},
                      fetch_list=[sums.name, x.grad_name])
        self.assertTrue(np.allclose(res[0], feed_add))
        self.assertTrue(np.allclose(res[1], ones / 1000.0))


98
class TestAssignOpError(unittest.TestCase):
99 100 101 102 103 104 105
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
106 107
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, fluid.layers.assign, x2)
108 109


110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
class TestAssignOApi(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1)
            z = fluid.layers.elementwise_add(x=x, y=y)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = paddle.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
            mean = fluid.layers.mean(sums)
            append_backward(mean)

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
        res = exe.run(main_program,
                      feed={'x': feed_x},
                      fetch_list=[sums.name, x.grad_name])
        self.assertTrue(np.allclose(res[0], feed_add))
        self.assertTrue(np.allclose(res[1], ones / 1000.0))

    def test_assign_NumpyArray(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.bool)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray1(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.float32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray2(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray3(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    def test_assign_List(self):
        paddle.disable_static()
        l = [1, 2, 3]
        result = paddle.assign(l)
        self.assertTrue(np.allclose(result.numpy(), np.array(l)))
        paddle.enable_static()

    def test_assign_BasicTypes(self):
        paddle.disable_static()
        result1 = paddle.assign(2)
        result2 = paddle.assign(3.0)
        result3 = paddle.assign(True)
        self.assertTrue(np.allclose(result1.numpy(), np.array([2])))
        self.assertTrue(np.allclose(result2.numpy(), np.array([3.0])))
        self.assertTrue(np.allclose(result3.numpy(), np.array([1])))
        paddle.enable_static()

184 185
    def test_clone(self):
        paddle.disable_static()
186
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
187 188
        self.python_api = paddle.clone

189 190 191 192 193 194 195 196 197 198
        x = paddle.ones([2])
        x.stop_gradient = False
        clone_x = paddle.clone(x)

        y = clone_x**3
        y.backward()

        self.assertTrue(np.array_equal(x, [1, 1]), True)
        self.assertTrue(np.array_equal(clone_x.grad.numpy(), [3, 3]), True)
        self.assertTrue(np.array_equal(x.grad.numpy(), [3, 3]), True)
199
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
200 201 202 203 204 205 206 207 208 209 210 211 212
        paddle.enable_static()

        with program_guard(Program(), Program()):
            x_np = np.random.randn(2, 3).astype('float32')
            x = paddle.static.data("X", shape=[2, 3])
            clone_x = paddle.clone(x)
            exe = paddle.static.Executor()
            y_np = exe.run(paddle.static.default_main_program(),
                           feed={'X': x_np},
                           fetch_list=[clone_x])[0]

        self.assertTrue(np.array_equal(y_np, x_np), True)

213 214 215

class TestAssignOpErrorApi(unittest.TestCase):
    def test_errors(self):
216
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
217 218 219 220 221 222
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, paddle.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
223 224
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, paddle.assign, x2)
225
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
226

227 228 229 230 231 232 233
    def test_type_error(self):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            x = [paddle.randn([3, 3]), paddle.randn([3, 3])]
            # not support to assign list(var)
            self.assertRaises(TypeError, paddle.assign, x)

234

Y
Yu Yang 已提交
235
if __name__ == '__main__':
236
    paddle.enable_static()
Y
Yu Yang 已提交
237
    unittest.main()