fft.py 70.6 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from typing import Sequence
import numpy as np
import paddle
18
from .tensor.attribute import is_floating_point, is_integer
19
from .tensor.creation import _real_to_complex_dtype, _complex_to_real_dtype
F
Feiyu Chan 已提交
20
from .fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21
from . import _C_ops, _legacy_C_ops
22 23 24 25
from .fluid.data_feeder import check_variable_and_dtype
from .fluid.layer_helper import LayerHelper

__all__ = [
Z
zhiboniu 已提交
26 27 28 29 30 31
    'fft',
    'ifft',
    'rfft',
    'irfft',
    'hfft',
    'ihfft',
32 33 34 35 36
    'fft2',
    'ifft2',
    'rfft2',
    'irfft2',
    'hfft2',
Z
zhiboniu 已提交
37
    'ihfft2',
38 39 40 41 42
    'fftn',
    'ifftn',
    'rfftn',
    'irfftn',
    'hfftn',
Z
zhiboniu 已提交
43 44 45 46
    'ihfftn',
    'fftfreq',
    'rfftfreq',
    'fftshift',
47
    'ifftshift',
Z
zhiboniu 已提交
48
]
49 50 51 52 53


def _check_normalization(norm):
    if norm not in ['forward', 'backward', 'ortho']:
        raise ValueError(
54 55 56 57
            "Unexpected norm: {}. Norm should be forward, backward or ortho".format(
                norm
            )
        )
58 59 60 61 62


def _check_fft_n(n):
    if not isinstance(n, int):
        raise ValueError(
63 64
            "Invalid FFT argument n({}), it shoule be an integer.".format(n)
        )
65 66
    if n <= 0:
        raise ValueError(
67 68
            "Invalid FFT argument n({}), it should be positive.".format(n)
        )
69 70 71 72 73 74


def _check_fft_shape(x, s):
    ndim = x.ndim
    if not isinstance(s, Sequence):
        raise ValueError(
75 76
            "Invaid FFT argument s({}), it should be a sequence of integers."
        )
77 78 79 80

    if len(s) > ndim:
        raise ValueError(
            "Length of FFT argument s should not be larger than the rank of input. "
81 82
            "Received s: {}, rank of x: {}".format(s, ndim)
        )
83 84
    for size in s:
        if not isinstance(size, int) or size <= 0:
85 86 87
            raise ValueError(
                "FFT sizes {} contains invalid value ({})".format(s, size)
            )
88 89 90 91 92 93


def _check_fft_axis(x, axis):
    ndim = x.ndim
    if not isinstance(axis, int):
        raise ValueError(
94 95
            "Invalid FFT axis ({}), it shoule be an integer.".format(axis)
        )
96 97 98
    if axis < -ndim or axis >= ndim:
        raise ValueError(
            "Invalid FFT axis ({}), it should be in range [-{}, {})".format(
99 100 101
                axis, ndim, ndim
            )
        )
102 103 104 105 106 107


def _check_fft_axes(x, axes):
    ndim = x.ndim
    if not isinstance(axes, Sequence):
        raise ValueError(
108 109 110 111
            "Invalid FFT axes ({}), it should be a sequence of integers.".format(
                axes
            )
        )
112 113 114
    if len(axes) > ndim:
        raise ValueError(
            "Length of fft axes should not be larger than the rank of input. "
115 116
            "Received, len of axes: {}, rank of x: {}".format(len(axes), ndim)
        )
117 118 119
    for axis in axes:
        if not isinstance(axis, int) or axis < -ndim or axis >= ndim:
            raise ValueError(
120 121 122 123
                "FFT axes {} contains invalid value ({}), it should be in range [-{}, {})".format(
                    axes, axis, ndim, ndim
                )
            )
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144


def _resize_fft_input(x, s, axes):
    if len(s) != len(axes):
        raise ValueError("length of `s` should equals length of `axes`.")
    shape = x.shape
    ndim = x.ndim

    axes_to_pad = []
    paddings = []
    axes_to_slice = []
    slices = []
    for i, axis in enumerate(axes):
        if shape[axis] < s[i]:
            axes_to_pad.append(axis)
            paddings.append(s[i] - shape[axis])
        elif shape[axis] > s[i]:
            axes_to_slice.append(axis)
            slices.append((0, s[i]))

    if axes_to_slice:
145 146 147 148 149 150
        x = paddle.slice(
            x,
            axes_to_slice,
            starts=[item[0] for item in slices],
            ends=[item[1] for item in slices],
        )
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    if axes_to_pad:
        padding_widths = [0] * (2 * ndim)
        for axis, pad in zip(axes_to_pad, paddings):
            padding_widths[2 * axis + 1] = pad
        x = paddle.nn.functional.pad(x, padding_widths)
    return x


def _normalize_axes(x, axes):
    ndim = x.ndim
    return [item if item >= 0 else (item + ndim) for item in axes]


def _check_at_least_ndim(x, rank):
    if x.ndim < rank:
166 167 168
        raise ValueError(
            "The rank of the input ({}) should >= {}".format(x.ndim, rank)
        )
169 170 171 172 173 174 175


# public APIs 1d
def fft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Calculate one-dimensional discrete Fourier transform.

176
    This function uses the efficient fast Fourier transform (FFT) algorithm [1] to
177 178 179 180
    calculate the 1-D * n * point discrete Fourier transform (DFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
181 182 183
        n (int, optional): The length of the output transform axis. If `n` is less than
            the length input, the input will be cropped. If larger, the input is filled
            with zeros. If `n` is not given, the input length along the axis specified
184
            by `axis` is used.
185 186
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
187
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
188
            pair and what normalization factor to use. The parameter value must be one
189
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
190 191
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
192
            scaled by ``1/sqrt(n)``.
193
        name (str, optional): The default value is None.  Normally there is no need for user to set
194 195 196
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
197
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated
198
        by `axis`, or the last one if `axis` is not specified.
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            fft_xp = paddle.fft.fft(xp).numpy()
            print(fft_xp)
            #  [1.+1.25396034e+00j 1.+4.38128627e+00j 1.-4.38128627e+00j
            #   1.-1.25396034e+00j 1.-4.81574619e-01j 1.+8.88178420e-16j
            #   1.+4.81574619e-01j]


    """
217
    if is_integer(x) or is_floating_point(x):
218 219 220
        return fft_r2c(
            x, n, axis, norm, forward=True, onesided=False, name=name
        )
221 222 223 224 225 226 227 228
    else:
        return fft_c2c(x, n, axis, norm, forward=True, name=name)


def ifft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the 1-D inverse discrete Fourier Transform.

229
    This function computes the inverse of the 1-D *n*-point discrete Fourier transform
230 231 232 233 234 235 236 237 238 239 240 241
    computed by `fft`.  In other words, ``ifft(fft(x)) == x`` to within numerical accuracy.

    The input should be ordered in the same way as is returned by `fft`,
    i.e.,

    * ``x[0]`` should contain the zero frequency term,
    * ``x[1:n//2]`` should contain the positive-frequency terms,
    * ``x[n//2 + 1:]`` should contain the negative-frequency terms, in
      increasing order starting from the most negative frequency.

    For an even number of input points, ``x[n//2]`` represents the sum of
    the values at the positive and negative Nyquist frequencies, as the two
242
    are aliased together.
243 244 245

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
246 247 248
        n (int, optional): The length of the output transform axis. If `n` is less than
            the length input, the input will be cropped. If larger, the input is filled
            with zeros. If `n` is not given, the input length along the axis specified
249
            by `axis` is used.
250 251
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
252
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
253
            pair and what normalization factor to use. The parameter value must be one
254
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
255 256
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
257
            scaled by ``1/sqrt(n)``.
258
        name (str, optional): The default value is None.  Normally there is no need for user to set
259
            this property. For more information, please refer to :ref:`api_guide_Name`.
260

261
    Returns:
262
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        by `axis`, or the last one if `axis` is not specified.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            ifft_xp = paddle.fft.ifft(xp).numpy()
            print(ifft_xp)
            #  [0.14285714+1.79137191e-01j 0.14285714+6.87963741e-02j
            #   0.14285714+1.26882631e-16j 0.14285714-6.87963741e-02j
            #   0.14285714-1.79137191e-01j 0.14285714-6.25898038e-01j
            #   0.14285714+6.25898038e-01j]

    """
282
    if is_integer(x) or is_floating_point(x):
283 284 285
        return fft_r2c(
            x, n, axis, norm, forward=False, onesided=False, name=name
        )
286 287 288 289 290 291 292 293 294 295 296 297 298
    else:
        return fft_c2c(x, n, axis, norm, forward=False, name=name)


def rfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The one dimensional FFT for real input.

    This function computes the one dimensional *n*-point discrete Fourier
    Transform (DFT) of a real-valued tensor by means of an efficient algorithm
    called the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
299 300
    Hermitian-symmetric. This function does not compute the negative frequency
    terms, and the length of the transformed axis of the output is therefore
301 302 303
    ``n//2 + 1``.

    Args:
304 305 306 307 308
        x(Tensor) : Real-valued input tensor
        n(int, optional): Number of points along transformation axis in the
            input to use. If `n` is smaller than the length of the input, the
            input is cropped. If it is larger, the input is padded with zeros.
            If `n` is not given, the length of the input along the axis
309
            specified by `axis` is used.
310
        axis(int, optional): Axis over which to compute the FFT. Default value
311
            is last axis.
312 313 314
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward  pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
315
            default value is "backward".
316

317 318 319
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
320

321
            Where ``n`` is the multiplication of each element in  ``s`` .
322 323 324
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
325 326 327 328 329

    Returns:
        out(Tensor) : complex tensor

    Examples:
330

331
    .. code-block:: python
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346
        import paddle

        x = paddle.to_tensor([0.0, 1.0, 0.0, 0.0])
        print(paddle.fft.rfft(x))
        # Tensor(shape=[3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [ (1+0j), -1j    , (-1+0j)])
    """
    return fft_r2c(x, n, axis, norm, forward=True, onesided=True, name=name)


def irfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Computes the inverse of `rfft`.

347 348
    This function calculates the inverse of the one-dimensional *n* point discrete
    Fourier transform of the actual input calculated by "rfft". In other words,
349 350
    ``irfft(rfft(a),len(a)) == a`` is within the numerical accuracy range.

351 352 353 354
    The input shall be in the form of "rfft", i.e. the actual zero frequency term,
    followed by the complex positive frequency term, in the order of increasing frequency.
    Because the discrete Fourier transform of the actual input is Hermite symmetric,
    the negative frequency term is regarded as the complex conjugate term of the corresponding
355 356 357 358 359
    positive frequency term.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
360 361 362
            points, ``n//2 + 1``input points are necessary. If the length of the input tensor is greater
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given,
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified
363
            along the ` axis'.
364 365
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
366
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
367
            pair and what normalization factor to use. The parameter value must be one
368
            of "forward" or "backward" or "ortho". Default is "backward".
369 370
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
371 372

    Returns:
373 374 375
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis.
376 377
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1``
        in some cases.
378

379 380 381 382 383 384
    Examples:

        .. code-block:: python

            import paddle

385 386 387 388 389
            x = paddle.to_tensor([1, -1j, -1])
            irfft_x = paddle.fft.irfft(x)
            print(irfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 1., 0., 0.])
390 391 392 393 394 395 396 397 398 399 400 401
    """
    return fft_c2r(x, n, axis, norm, forward=False, name=name)


def hfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the FFT of a signal that has Hermitian symmetry, a real
    spectrum.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
402 403 404
            points, ``n//2 + 1`` input points are necessary. If the length of the input tensor is greater
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given,
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified
405
            along the ` axis'.
406 407
        axis (int,optional): Axis used to calculate FFT. If not specified, the last axis
            is used by default.
408
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
409
            pair and what normalization factor to use. The parameter value must be one
410
            of "forward" or "backward" or "ortho". Default is "backward".
411 412
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
413 414

    Returns:
415 416 417 418
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis.
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1`` in
419
        some cases.
420

421 422 423 424 425 426
    Examples:

        .. code-block:: python

            import paddle

427 428 429 430 431
            x = paddle.to_tensor([1, -1j, -1])
            hfft_x = paddle.fft.hfft(x)
            print(hfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 0., 0., 4.])
432 433 434 435 436 437 438 439 440
    """

    return fft_c2r(x, n, axis, norm, forward=True, name=name)


def ihfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The inverse FFT of a signal that has Hermitian symmetry.

441 442
    This function computes the one dimensional *n*-point inverse FFT of a signal
    that has Hermitian symmetry by means of an efficient algorithm called
443 444 445
    the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
446 447
    Hermitian-symmetric. This function does not compute the negative frequency
    terms, and the length of the transformed axis of the output is therefore
448 449 450 451
    ``n//2 + 1``.

    Args:
        x(Tensor): Input tensor.
452 453 454 455
        n(int, optional): The number of points along transformation axis in the
            input to use.  If `n` is smaller than the length of the input, the
            input is cropped.  If it is larger, the input is padded with zeros.
            If `n` is not given, the length of the input along the axis
456 457 458
            specified by `axis` is used.
        axis(int, optional) : Axis over which to compute the inverse FFT. If not
            given, the last axis is used.
459 460 461
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
462
            default value is "backward".
463 464 465
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
466 467 468 469 470

    Returns:
        out(Tensor) : complex tensor.

    Examples:
471

472
    .. code-block:: python
473 474

        import paddle
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])

    """
    return fft_r2c(x, n, axis, norm, forward=False, onesided=True, name=name)


# public APIs nd
def fftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D discrete Fourier Transform.

493
    This function calculates the n-D discrete Fourier transform on any number of axes
494 495 496 497 498 499 500 501 502 503 504 505
    in the M-D array by fast Fourier transform (FFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
506
            axes are used, or all axes if `s` is also not specified.
507
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
508
            pair and what normalization factor to use. The parameter value must be one
509
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
510 511
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
512
            scaled by ``1/sqrt(n)``.
513
        name (str, optional): The default value is None.  Normally there is no need for user to set
514 515 516
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
517
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by
518
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
519

520 521 522 523 524 525
    Examples:

        .. code-block:: python

            import paddle

526 527 528 529 530 531
            arr = paddle.arange(4, dtype="float64")
            x = paddle.meshgrid(arr, arr, arr)[1]

            fftn_xp = paddle.fft.fftn(x, axes=(1, 2))
            print(fftn_xp.numpy())
            # [[[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
532 533 534
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
535 536

            #  [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
537 538 539
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
540 541

            #  [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
542 543 544
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
545 546

            #  [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
547 548 549 550
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]]
    """
551
    if is_integer(x) or is_floating_point(x):
552 553 554
        return fftn_r2c(
            x, s, axes, norm, forward=True, onesided=False, name=name
        )
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    else:
        return fftn_c2c(x, s, axes, norm, forward=True, name=name)


def ifftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D inverse discrete Fourier Transform.

    This function computes the inverse of the N-D discrete
    Fourier Transform over any number of axes in an M-D array by
    means of the Fast Fourier Transform (FFT).  In other words,
    ``ifftn(fftn(x)) == x`` to within numerical accuracy.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fftn`, i.e., it should have the term for zero frequency
    in all axes in the low-order corner, the positive frequency terms in the
    first half of all axes, the term for the Nyquist frequency in the middle
    of all axes and the negative frequency terms in the second half of all
    axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
585
            axes are used, or all axes if `s` is also not specified.
586
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
587
            pair and what normalization factor to use. The parameter value must be one
588
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
589 590
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are
591
            scaled by ``1/sqrt(n)``.
592
        name (str, optional): The default value is None.  Normally there is no need for user to set
593
            this property. For more information, please refer to :ref:`api_guide_Name`.
594

595
    Returns:
596
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by
597
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
598

599 600 601 602 603 604
    Examples:

        .. code-block:: python

            import paddle

605 606 607 608 609 610 611 612 613 614 615 616 617
            x = paddle.eye(3)
            ifftn_x = paddle.fft.ifftn(x, axes=(1,))
            print(ifftn_x)
            # Tensor(shape=[3, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[ (0.3333333432674408+0j)                  ,
            #           (0.3333333432674408-0j)                  ,
            #           (0.3333333432674408+0j)                  ],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204+0.28867512941360474j),
            #          (-0.1666666716337204-0.28867512941360474j)],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204-0.28867512941360474j),
            #          (-0.1666666716337204+0.28867512941360474j)]])
618
    """
619
    if is_integer(x) or is_floating_point(x):
620 621 622
        return fftn_r2c(
            x, s, axes, norm, forward=False, onesided=False, name=name
        )
623 624 625 626 627 628
    else:
        return fftn_c2c(x, s, axes, norm, forward=False, name=name)


def rfftn(x, s=None, axes=None, norm="backward", name=None):
    """
U
ustiniankw 已提交
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    The N dimensional FFT for real input.

    This function computes the N-dimensional discrete Fourier Transform over
    any number of axes in an M-dimensional real array by means of the Fast
    Fourier Transform (FFT).  By default, all axes are transformed, with the
    real transform performed over the last axis, while the remaining
    transforms are complex.

    The transform for real input is performed over the last transformation
    axis, as by `rfft`, then the transform over the remaining axes is
    performed as by `fftn`.  The order of the output is as for `rfft` for the
    final transformation axis, and as for `fftn` for the remaining
    transformation axes.

    Args:
        x(Tensor) : Input tensor, taken to be real.
646 647 648 649 650 651
        s(Sequence[int], optional) : Shape to use from the exec fft. The final element of
            `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining
            axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if
            the given shape is smaller than that of the input, the input is
            cropped.  If it is larger, the input is padded with zeros. if `s` is
            not given, the shape of the input along the axes specified by `axes`
652
            is used.
653 654
        axes(Sequence[int], optional) : Axes over which to compute the FFT.  If not given,
            the last ``len(s)`` axes are used, or all axes if `s` is also not
655
            specified.
656 657 658 659
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
            default value is "backward". The details of
660
            three operations are shown below:
661 662

                - "backward": The factor of forward direction and backward direction are ``1``
U
ustiniankw 已提交
663
                  and ``1/n`` respectively;
664
                - "forward": The factor of forward direction and backward direction are ``1/n``
U
ustiniankw 已提交
665
                  and ``1`` respectively;
666
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
667

668
            Where ``n`` is the multiplication of each element in  ``s`` .
669 670 671
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
672 673

    Returns:
U
ustiniankw 已提交
674
        out(Tensor), complex tensor
675 676

    Examples:
U
ustiniankw 已提交
677
        .. code-block:: python
678

U
ustiniankw 已提交
679
            import paddle
680

U
ustiniankw 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
            # default, all axis will be used to exec fft
            x = paddle.ones((2, 3, 4))
            print(paddle.fft.rfftn(x))
            # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[[(24+0j), 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ]],
            #
            #         [[0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ]]])

            # use axes(2, 0)
            print(paddle.fft.rfftn(x, axes=(2, 0)))
            # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[[(8+0j), 0j     , 0j     ],
            #          [(8+0j), 0j     , 0j     ],
            #          [(8+0j), 0j     , 0j     ]],
            #
            #         [[0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ],
            #          [0j     , 0j     , 0j     ]]])
703 704 705 706 707 708 709 710 711 712 713 714 715

    """
    return fftn_r2c(x, s, axes, norm, forward=True, onesided=True, name=name)


def irfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Computes the inverse of `rfftn`.

    This function computes the inverse of the N-D discrete
    Fourier Transform for real input over any number of axes in an
    M-D array by means of the Fast Fourier Transform (FFT). In
    other words, ``irfftn(rfftn(x), x.shape) == x`` to within numerical
716
    accuracy. (The ``x.shape`` is necessary like ``len(x)`` is for `irfft`,
717 718 719 720 721 722 723 724
    and for the same reason.)

    The input should be ordered in the same way as is returned by `rfftn`,
    i.e., as for `irfft` for the final transformation axis, and as for `ifftn`
    along all the other axes.

    Args:
        x (Tensor): The input data. It's a Tensor type.
725 726 727 728 729 730 731
        s (sequence of ints, optional): The length of the output transform axis.
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).

            - `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used.
            - Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros.
            - If `s` is not given, the shape of the input along the axes specified by axes is used. Except for the last axis which is taken to be ``2*(k-1)``

732
            where ``k`` is the length of the input along that axis.
733

734
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
735
            `len(s)` axes are used, or all axes if `s` is also not specified.
736
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
737 738
            pair and what normalization factor to use. The parameter value must be one
            of "forward" or "backward" or "ortho". Default is "backward". The details of
739
            three operations are shown below:
740

741 742 743
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
744

745
            Where ``n`` is the multiplication of each element in  ``s`` .
746 747 748
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

749
    Returns:
750 751
        Real tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
        or by a combination of `s` or `x`, as explained in the parameters section above. The length of
752 753
        each transformed axis is as given by the corresponding element of `s`, or the length of the input
        in every axis except for the last one if `s` is not given. In the final transformed axis the length
754 755
        of the output when `s` is not given is ``2*(m-1)``, where ``m`` is the length of the final
        transformed axis of the input. To get an odd number of output points in the final axis,
756 757 758 759 760 761 762 763
        `s` must be specified.

    Examples:

        .. code-block:: python

            import paddle

764 765 766 767
            x = paddle.to_tensor([2.+2.j, 2.+2.j, 3.+3.j]).astype(paddle.complex128)
            print(x)
            irfftn_x = paddle.fft.irfftn(x)
            print(irfftn_x)
768

769 770 771 772
            # Tensor(shape=[3], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #        [(2+2j), (2+2j), (3+3j)])
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 2.25000000, -1.25000000,  0.25000000,  0.75000000])
773

774 775 776 777 778 779 780 781 782
    """
    return fftn_c2r(x, s, axes, norm, forward=False, name=name)


def hfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D FFT of Hermitian symmetric complex input, i.e., a
    signal with a real spectrum.

783 784 785 786
    This function calculates the n-D discrete Fourier transform of Hermite symmetric
    complex input on any axis in M-D array by fast Fourier transform (FFT).
    In other words, ``ihfftn(hfftn(x, s)) == x is within the numerical accuracy range.
    (``s`` here are ``x.shape`` and ``s[-1] = x.shape[- 1] * 2 - 1``. This is necessary
787 788 789 790
    for the same reason that ``irfft` requires ``x.shape``.)

    Args:
        x (Tensor): The input data. It's a Tensor type.
791
        s (sequence of ints, optional): The length of the output transform axis.
792 793
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
            number of input points used along this axis, except for the last axis,
794 795 796 797 798
            where ``s[-1]//2+1`` points of the input are used. Along any axis, if
            the shape indicated by `s` is smaller than that of the input, the input
            is cropped. If it is larger, the input is padded with zeros.
            If `s` is not given, the shape of the input along the axes specified by axes
            is used. Except for the last axis which is taken to be ``2*(k-1)`` where
799 800
            ``k`` is the length of the input along that axis.
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
801
            `len(s)` axes are used, or all axes if `s` is also not specified.
802
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
803
            pair and what normalization factor to use. The parameter value must be one
804
            of "forward" or "backward" or "ortho". Default is "backward".
805 806 807
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

808
    Returns:
809
        Real tensor. Truncate or zero fill input, transforming along the axis indicated by axis or
810
        a combination of `s` or `X`.
811

812 813 814 815 816 817
    Examples:

        .. code-block:: python

            import paddle

818 819 820 821 822
            x = paddle.to_tensor([(2+2j), (2+2j), (3+3j)])
            hfftn_x = paddle.fft.hfftn(x)
            print(hfftn_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [ 9.,  3.,  1., -5.])
823 824 825 826 827 828 829 830
    """
    return fftn_c2r(x, s, axes, norm, forward=True, name=name)


def ihfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The n dimensional inverse FFT of a signal that has Hermitian symmetry.

831 832
    This function computes the n dimensional inverse FFT over any number of axes
    in an M-dimensional of a signal that has Hermitian symmetry by means of an
833 834 835 836
    efficient algorithm called the Fast Fourier Transform (FFT).

    Args:
        x(Tensor): Input tensor.
837 838 839 840 841
        s(Sequence[int], optional) : Shape (length along each transformed axis)
            to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis
            1, etc.). Along any axis, if the given shape is smaller than that
            of the input, the input is cropped. If it is larger, the input is
            padded with zeros. if `s` is not given, the shape of the input
842
            along the axes specified by `axes` is used.
843
        axes(Sequence[int], optional) : Axis over which to compute the inverse FFT. If not
844
            given, the last axis is used.
845 846 847
        norm(str, optional) : Normalization mode, indicates which direction of
            the forward/backward pair of transforms is scaled and with what
            normalization factor. Include {"backward", "ortho", "forward"},
848
            default value is "backward".
849 850 851
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
852 853 854 855 856

    Returns:
        out(Tensor) : complex tensor.

    Examples:
857

858
    .. code-block:: python
859 860

        import paddle
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])
    """
    return fftn_r2c(x, s, axes, norm, forward=False, onesided=True, name=name)


# public APIs 2d
def fft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D discrete Fourier Transform

    This function computes the N-D discrete Fourier Transform
    over any axes in an M-D array by means of the
    Fast Fourier Transform (FFT). By default, the transform is computed over
    the last two axes of the input array, i.e., a 2-dimensional FFT.

    Args:
        x (Tensor): The input data. It's a Tensor type.
885 886
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output.
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``.
887 888 889 890
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
891 892
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a
            sequence of 2 integers. If not specified, the last two axes are used by default.
893
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
894
            pair and what normalization factor to use. The parameter value must be one
895
            of "forward" or "backward" or "ortho". Default is "backward".
896 897 898
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

899
    Returns:
900
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
901 902 903 904 905 906 907 908
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import paddle

909 910 911 912
            arr = paddle.arange(2, dtype="float64")
            x = paddle.meshgrid(arr, arr)[0]

            fft2_xp = paddle.fft.fft2(x)
913
            print(fft2_xp)
914 915 916
            # Tensor(shape=[2, 2], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
            #        [[ (2+0j),  0j    ],
            #         [(-2+0j),  0j    ]])
917 918 919 920 921 922

    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
923 924 925 926
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
927 928 929
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
930 931 932 933
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
    return fftn(x, s, axes, norm, name)


def ifft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D inverse discrete Fourier Transform.

    This function computes the inverse of the 2-D discrete Fourier
    Transform over any number of axes in an M-D array by means of
    the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(x)) == x``
    to within numerical accuracy. By default, the inverse transform is
    computed over the last two axes of the input array.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fft2`, i.e., it should have the term for zero frequency
    in the low-order corner of the two axes, the positive frequency terms in
    the first half of these axes, the term for the Nyquist frequency in the
    middle of the axes and the negative frequency terms in the second half of
    both axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type.
956 957
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output.
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``.
958 959 960 961
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
962 963
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a
            sequence of 2 integers. If not specified, the last two axes are used by default.
964
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
965
            pair and what normalization factor to use. The parameter value must be one
966
            of "forward" or "backward" or "ortho". Default is "backward".
967
        name (str, optional): The default value is None.  Normally there is no need for user to set
968
            this property. For more information, please refer to :ref:`api_guide_Name`.
969

970
    Returns:
971
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`,
972 973 974 975 976 977 978 979
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import paddle

980 981 982 983
            arr = paddle.arange(2, dtype="float64")
            x = paddle.meshgrid(arr, arr)[0]

            ifft2_xp = paddle.fft.ifft2(x)
984
            print(ifft2_xp)
985 986 987
            # Tensor(shape=[2, 2], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
            #        [[ (0.5+0j),  0j      ],
            #         [(-0.5+0j),  0j      ]])
988 989 990 991 992
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
993 994 995 996
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
997 998 999
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1000 1001 1002 1003
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    return ifftn(x, s, axes, norm, name)


def rfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    The two dimensional FFT with real tensor input.

    This is really just `rfftn` with different default behavior.
    For more details see `rfftn`.

    Args:
        x(Tensor): Input tensor, taken to be real.
1016
        s(Sequence[int], optional) : Shape of the FFT.
1017
        axes(Sequence[int], optional): Axes over which to compute the FFT.
1018 1019 1020 1021
        norm(str, optional) : {"backward", "ortho", "forward"},
            default is "backward". Indicates which direction of the
            forward/backward pair of transforms is scaled and with what
            normalization factor. The details of
1022
            three operations are shown below:
1023

1024 1025 1026
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
1027

1028
            Where ``n`` is the multiplication of each element in  ``s`` .
1029 1030 1031
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
1032

1033
    Returns:
1034 1035 1036 1037 1038
        out(Tensor): The result of the real 2-D FFT.

    Examples:

    .. code-block:: python
1039

1040
        import paddle
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

        arr = paddle.arange(5, dtype="float64")
        x = paddle.meshgrid(arr, arr)[0]

        result = paddle.fft.rfft2(x)
        print(result.numpy())
        # [[ 50.  +0.j           0.  +0.j           0.  +0.j        ]
        #  [-12.5+17.20477401j   0.  +0.j           0.  +0.j        ]
        #  [-12.5 +4.0614962j    0.  +0.j           0.  +0.j        ]
        #  [-12.5 -4.0614962j    0.  +0.j           0.  +0.j        ]
        #  [-12.5-17.20477401j   0.  +0.j           0.  +0.j        ]]
1052 1053 1054 1055 1056
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1057 1058 1059 1060
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1061 1062 1063
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1064 1065 1066 1067
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    return rfftn(x, s, axes, norm, name)


def irfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Computes the inverse of `rfft2`.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output to the inverse FFT. Default is None.
1078 1079
        axes (sequence of ints, optional): The axes over which to compute the inverse FFT. Axes
            must be two-dimensional. If not specified, the last two axes are used by default.
1080
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
1081 1082
            pair and what normalization factor to use. The parameter value must be one
            of "forward" or "backward" or "ortho". Default is "backward". The details of
1083
            three operations are shown below:
1084

1085 1086 1087
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
1088

1089
            Where ``n`` is the multiplication of each element in  ``s`` .
1090 1091 1092
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .

1093 1094
    Returns:
        Real tensor. The result of the inverse real 2-D FFT.
1095

1096 1097 1098 1099 1100 1101
    Examples:

        .. code-block:: python

            import paddle

1102 1103 1104 1105 1106 1107
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            irfft2_x = paddle.fft.irfft2(x)
            print(irfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 2.37500000, -1.12500000,  0.37500000,  0.87500000],
            #         [ 0.12500000,  0.12500000,  0.12500000,  0.12500000]])
1108 1109 1110 1111 1112
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1113 1114 1115 1116
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1117 1118 1119
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1120 1121 1122 1123
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    return irfftn(x, s, axes, norm, name)


def hfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D FFT of a Hermitian complex array.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output. Default is None.
1134 1135
        axes (sequence of ints, optional):  Axes over which to compute the FFT. Axes must be
            two-dimensional. If not specified, the last two axes are used by default.
1136
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
1137
            pair and what normalization factor to use. The parameter value must be one
1138
            of "forward" or "backward" or "ortho". Default is "backward".
1139 1140 1141
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

1142 1143
    Returns:
        Real tensor. The real result of the 2-D Hermitian complex real FFT.
1144

1145 1146 1147 1148 1149 1150
    Examples:

        .. code-block:: python

            import paddle

1151 1152 1153 1154 1155 1156
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            hfft2_x = paddle.fft.hfft2(x)
            print(hfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[19.,  7.,  3., -9.],
            #         [ 1.,  1.,  1.,  1.]])
1157 1158 1159 1160 1161
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1162 1163 1164 1165
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1166 1167 1168
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1169 1170 1171 1172
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    return hfftn(x, s, axes, norm, name)


def ihfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the two dimensional inverse FFT of a real spectrum.

    This is really `ihfftn` with different defaults.
    For more details see `ihfftn`.

    Args:
1184
        x(Tensor): Input tensor.
1185
        s(Sequence[int], optional): Shape of the real input to the inverse FFT.
1186
        axes(Sequance[int], optional): The axes over which to compute the
1187
            inverse fft. Default is the last two axes.
1188
        norm(str, optional): {"backward", "ortho", "forward"}. Default is
1189
            "backward".
1190 1191 1192
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

    Returns:
        out(Tensor) : The result of the inverse hermitian 2-D FFT.

    Examples:

        .. code-block:: python

            import paddle

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
            arr = paddle.arange(5, dtype="float64")
            x = paddle.meshgrid(arr, arr)[0]
            print(x)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[0., 0., 0., 0., 0.],
            #         [1., 1., 1., 1., 1.],
            #         [2., 2., 2., 2., 2.],
            #         [3., 3., 3., 3., 3.],
            #         [4., 4., 4., 4., 4.]])

            ihfft2_xp = paddle.fft.ihfft2(x)
            print(ihfft2_xp.numpy())
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            # [[ 2. +0.j          0. +0.j          0. +0.j        ]
            #  [-0.5-0.68819096j  0. +0.j          0. +0.j        ]
            #  [-0.5-0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.68819096j  0. +0.j          0. +0.j        ]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1225 1226 1227 1228
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers.".format(
                    s
                )
            )
1229 1230 1231
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1232 1233 1234 1235
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers.".format(
                    axes
                )
            )
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    return ihfftn(x, s, axes, norm, name)


# public APIs utilities
def fftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
1256
        name (str, optional): The default value is None.  Normally there is no need for user to set
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length 'n' containing the sampling frequency.

    Examples:

        .. code-block:: python

            import paddle

            scalar_temp = 0.5
1269
            fftfreq_xp = paddle.fft.fftfreq(5, d=scalar_temp)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
            print(fftfreq_xp)
            #  Tensor(shape=[5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [ 0.        ,  0.40000001,  0.80000001, -0.80000001, -0.40000001])
    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = (n + 1) // 2
    neg_max = n // 2
    indices = paddle.arange(-neg_max, pos_max, dtype=dtype, name=name)
    indices = paddle.roll(indices, -neg_max, name=name)
    return indices * val


def rfftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

1288 1289
    The returned floating-point array "F" contains the center of the frequency unit,
    and the unit is the number of cycles of the sampling interval (the starting point is zero).
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    the Nyquist frequency component is considered to be positive.

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
1301
        dtype (str, optional): The data type of returns. Defaults is the data type of returns
1302
            of ``paddle.get_default_dtype()``.
1303
        name (str, optional): The default value is None.  Normally there is no need for user to set
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length ``n//2 + 1`` containing the sample frequencies.

    Examples:

        .. code-block:: python

            import paddle

            scalar_temp = 0.3
1316
            rfftfreq_xp = paddle.fft.rfftfreq(5, d=scalar_temp)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
            print(rfftfreq_xp)

            #  Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [0.        , 0.66666669, 1.33333337])

    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = 1 + n // 2
    indices = paddle.arange(0, pos_max, dtype=dtype, name=name)
    return indices * val


def fftshift(x, axes=None, name=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half spaces for all the axes listed (all by default).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
1342
        name (str, optional): The default value is None.  Normally there is no need for user to set
1343 1344 1345 1346
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
1347

1348 1349 1350 1351 1352 1353
    Examples:

        .. code-block:: python

            import paddle

1354 1355 1356 1357 1358 1359
            fftfreq_xp = paddle.fft.fftfreq(5, d=0.3)
            print(fftfreq_xp)
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0.        ,  0.66666669,  1.33333337, -1.33333337, -0.66666669])

            res = paddle.fft.fftshift(fftfreq_xp)
1360
            print(res)
1361 1362
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-1.33333337, -0.66666669,  0.        ,  0.66666669,  1.33333337])
1363 1364 1365 1366 1367

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1368 1369 1370
        rank = len(x.shape)
        axes = list(range(0, rank))
        shifts = shape // 2
1371 1372 1373
    elif isinstance(axes, int):
        shifts = shape[axes] // 2
    else:
1374
        shifts = paddle.concat([shape[ax] // 2 for ax in axes])
1375 1376 1377 1378 1379
    return paddle.roll(x, shifts, axes, name=name)


def ifftshift(x, axes=None, name=None):
    """
1380
    The inverse of `fftshift`. Although the even length 'x' is the same, the function of the
1381 1382 1383 1384 1385 1386
    odd length 'x' is different. An example.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
1387
        name (str, optional): The default value is None.  Normally there is no need for user to set
1388 1389 1390 1391
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
1392

1393 1394 1395 1396 1397 1398
    Examples:

        .. code-block:: python

            import paddle

1399 1400 1401 1402 1403 1404
            fftfreq_xp = paddle.fft.fftfreq(5, d=0.3)
            print(fftfreq_xp)
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0.        ,  0.66666669,  1.33333337, -1.33333337, -0.66666669])

            res = paddle.fft.ifftshift(fftfreq_xp)
1405
            print(res)
1406 1407
            # Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 1.33333337, -1.33333337, -0.66666669,  0.        ,  0.66666669])
1408 1409 1410 1411 1412

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1413 1414
        rank = len(x.shape)
        axes = list(range(0, rank))
1415
        shifts = -shape // 2
1416 1417 1418
    elif isinstance(axes, int):
        shifts = -shape[axes] // 2
    else:
1419
        shifts = paddle.concat([-shape[ax] // 2 for ax in axes])
1420 1421 1422 1423 1424
    return paddle.roll(x, shifts, axes, name=name)


# internal functions
def fft_c2c(x, n, axis, norm, forward, name):
1425
    if is_integer(x):
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)

    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)
F
Feiyu Chan 已提交
1442
    if in_dygraph_mode():
1443
        out = _C_ops.fft_c2c(x, axes, norm, forward)
F
Feiyu Chan 已提交
1444
    elif _in_legacy_dygraph():
1445
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1446
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1447
    else:
1448 1449 1450
        inputs = {
            'X': [x],
        }
1451 1452 1453 1454 1455
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1456 1457 1458
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1459 1460 1461 1462
    return out


def fft_r2c(x, n, axis, norm, forward, onesided, name):
1463
    if is_integer(x):
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1477
    if in_dygraph_mode():
1478
        out = _C_ops.fft_r2c(x, axes, norm, forward, onesided)
F
Feiyu Chan 已提交
1479
    elif _in_legacy_dygraph():
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
        attrs = (
            'axes',
            axes,
            'normalization',
            norm,
            'forward',
            forward,
            'onesided',
            onesided,
        )
1490
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1491
    else:
1492 1493 1494
        inputs = {
            'X': [x],
        }
1495 1496 1497 1498 1499 1500 1501 1502 1503
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1504 1505
            _real_to_complex_dtype(dtype)
        )
1506
        outputs = {"Out": [out]}
1507 1508 1509
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1510 1511 1512 1513
    return out


def fft_c2r(x, n, axis, norm, forward, name):
1514
    if is_integer(x):
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n // 2 + 1]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1530 1531
    if in_dygraph_mode():
        if n is not None:
1532
            out = _C_ops.fft_c2r(x, axes, norm, forward, n)
F
Feiyu Chan 已提交
1533
        else:
1534
            out = _C_ops.fft_c2r(x, axes, norm, forward, 0)
F
Feiyu Chan 已提交
1535
    elif _in_legacy_dygraph():
1536
        if n is not None:
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
            attrs = (
                'axes',
                axes,
                'normalization',
                norm,
                'forward',
                forward,
                'last_dim_size',
                n,
            )
1547 1548
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1549
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1550
    else:
1551 1552 1553
        inputs = {
            'X': [x],
        }
1554 1555 1556 1557 1558 1559
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if n is not None:
            attrs['last_dim_size'] = n
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1560 1561
            _complex_to_real_dtype(dtype)
        )
1562
        outputs = {"Out": [out]}
1563 1564 1565
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1566 1567 1568 1569
    return out


def fftn_c2c(x, s, axes, norm, forward, name):
1570
    if is_integer(x):
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes).tolist()
        axes = [axes[i] for i in axes_argsoft]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1593 1594 1595 1596
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1597 1598 1599 1600 1601 1602 1603
            s = [s[i] for i in axes_argsoft]

    if s is not None:
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1604
    if in_dygraph_mode():
1605
        out = _C_ops.fft_c2c(x, axes, norm, forward)
F
Feiyu Chan 已提交
1606
    elif _in_legacy_dygraph():
1607
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1608
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1609
    else:
1610 1611 1612
        inputs = {
            'X': [x],
        }
1613 1614 1615 1616 1617
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1618 1619 1620
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1621 1622 1623 1624
    return out


def fftn_r2c(x, s, axes, norm, forward, onesided, name):
1625
    if is_integer(x):
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1646 1647 1648 1649
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1650 1651 1652 1653 1654 1655 1656 1657
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        x = _resize_fft_input(x, s, axes)

    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1658
    if in_dygraph_mode():
1659
        out = _C_ops.fft_r2c(x, axes, norm, forward, onesided)
F
Feiyu Chan 已提交
1660
    elif _in_legacy_dygraph():
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
        attrs = (
            'axes',
            axes,
            'normalization',
            norm,
            'forward',
            forward,
            'onesided',
            onesided,
        )
1671
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1672
    else:
1673 1674 1675
        inputs = {
            'X': [x],
        }
1676 1677 1678 1679 1680 1681 1682 1683 1684
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1685 1686
            _real_to_complex_dtype(dtype)
        )
1687
        outputs = {"Out": [out]}
1688 1689 1690
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1691 1692 1693 1694 1695

    return out


def fftn_c2r(x, s, axes, norm, forward, name):
1696
    if is_integer(x):
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
1719 1720 1721 1722
                    "Length of s ({}) and length of axes ({}) does not match.".format(
                        len(s), len(axes)
                    )
                )
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        fft_input_shape = list(s)
        fft_input_shape[-1] = fft_input_shape[-1] // 2 + 1
        x = _resize_fft_input(x, fft_input_shape, axes)

    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1733 1734
    if in_dygraph_mode():
        if s is not None:
1735
            out = _C_ops.fft_c2r(x, axes, norm, forward, s[-1])
F
Feiyu Chan 已提交
1736
        else:
1737
            out = _C_ops.fft_c2r(x, axes, norm, forward, 0)
F
Feiyu Chan 已提交
1738
    elif _in_legacy_dygraph():
1739
        if s:
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
            attrs = (
                'axes',
                axes,
                'normalization',
                norm,
                'forward',
                forward,
                'last_dim_size',
                s[-1],
            )
1750 1751
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
1752
        out = getattr(_legacy_C_ops, op_type)(x, *attrs)
1753
    else:
1754 1755 1756
        inputs = {
            'X': [x],
        }
1757 1758 1759 1760 1761 1762
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if s:
            attrs["last_dim_size"] = s[-1]
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
1763 1764
            _complex_to_real_dtype(dtype)
        )
1765
        outputs = {"Out": [out]}
1766 1767 1768
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1769
    return out