test_assign_op.py 9.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
18
import numpy as np
Y
Yu Yang 已提交
19
import unittest
20
import paddle
21 22 23 24
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
25
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
26 27 28


class TestAssignOp(op_test.OpTest):
29

Y
Yu Yang 已提交
30
    def setUp(self):
C
chentianyu03 已提交
31
        self.python_api = paddle.assign
Y
Yu Yang 已提交
32
        self.op_type = "assign"
33
        x = np.random.random(size=(100, 10)).astype('float64')
Y
Yu Yang 已提交
34 35 36 37
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
38
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
39
        self.check_output(check_eager=True)
40
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Y
Yu Yang 已提交
41 42

    def test_backward(self):
43
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
44
        self.check_grad(['X'], 'Out', check_eager=True)
45
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Y
Yu Yang 已提交
46 47


48
class TestAssignFP16Op(op_test.OpTest):
49

50
    def setUp(self):
C
chentianyu03 已提交
51
        self.python_api = paddle.assign
52 53 54 55 56 57
        self.op_type = "assign"
        x = np.random.random(size=(100, 10)).astype('float16')
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
58
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
59
        self.check_output(check_eager=True)
60
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
61 62

    def test_backward(self):
63
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
64
        self.check_grad(['X'], 'Out', check_eager=True)
65
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
66 67


68
class TestAssignOpWithLoDTensorArray(unittest.TestCase):
69

70
    def test_assign_LoDTensorArray(self):
71
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
72 73 74 75 76
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
77 78 79
            y = fluid.layers.fill_constant(shape=[100, 10],
                                           dtype='float32',
                                           value=1)
80 81 82 83 84 85 86
            z = fluid.layers.elementwise_add(x=x, y=y)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = fluid.layers.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
            mean = fluid.layers.mean(sums)
            append_backward(mean)
87
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
88

89 90
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
91 92 93 94 95 96 97 98 99 100 101
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
        res = exe.run(main_program,
                      feed={'x': feed_x},
                      fetch_list=[sums.name, x.grad_name])
        self.assertTrue(np.allclose(res[0], feed_add))
        self.assertTrue(np.allclose(res[1], ones / 1000.0))


102
class TestAssignOpError(unittest.TestCase):
103

104 105 106
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
107 108
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
109 110
            self.assertRaises(TypeError, fluid.layers.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
111 112
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, fluid.layers.assign, x2)
113 114


115
class TestAssignOApi(unittest.TestCase):
116

117 118 119 120 121 122
    def test_assign_LoDTensorArray(self):
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
123 124 125
            y = fluid.layers.fill_constant(shape=[100, 10],
                                           dtype='float32',
                                           value=1)
126 127 128 129 130 131 132 133
            z = fluid.layers.elementwise_add(x=x, y=y)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = paddle.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
            mean = fluid.layers.mean(sums)
            append_backward(mean)

134 135
        place = fluid.CUDAPlace(
            0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
136 137 138 139 140 141 142 143 144 145 146 147
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
        res = exe.run(main_program,
                      feed={'x': feed_x},
                      fetch_list=[sums.name, x.grad_name])
        self.assertTrue(np.allclose(res[0], feed_add))
        self.assertTrue(np.allclose(res[1], ones / 1000.0))

    def test_assign_NumpyArray(self):
        with fluid.dygraph.guard():
148
            array = np.random.random(size=(100, 10)).astype(np.bool_)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray1(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.float32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray2(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray3(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    def test_assign_List(self):
        paddle.disable_static()
        l = [1, 2, 3]
        result = paddle.assign(l)
        self.assertTrue(np.allclose(result.numpy(), np.array(l)))
        paddle.enable_static()

    def test_assign_BasicTypes(self):
        paddle.disable_static()
        result1 = paddle.assign(2)
        result2 = paddle.assign(3.0)
        result3 = paddle.assign(True)
        self.assertTrue(np.allclose(result1.numpy(), np.array([2])))
        self.assertTrue(np.allclose(result2.numpy(), np.array([3.0])))
        self.assertTrue(np.allclose(result3.numpy(), np.array([1])))
        paddle.enable_static()

191 192
    def test_clone(self):
        paddle.disable_static()
193
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
194 195
        self.python_api = paddle.clone

196 197 198 199 200 201 202 203 204 205
        x = paddle.ones([2])
        x.stop_gradient = False
        clone_x = paddle.clone(x)

        y = clone_x**3
        y.backward()

        self.assertTrue(np.array_equal(x, [1, 1]), True)
        self.assertTrue(np.array_equal(clone_x.grad.numpy(), [3, 3]), True)
        self.assertTrue(np.array_equal(x.grad.numpy(), [3, 3]), True)
206
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
207 208 209 210 211 212 213 214 215 216 217 218 219
        paddle.enable_static()

        with program_guard(Program(), Program()):
            x_np = np.random.randn(2, 3).astype('float32')
            x = paddle.static.data("X", shape=[2, 3])
            clone_x = paddle.clone(x)
            exe = paddle.static.Executor()
            y_np = exe.run(paddle.static.default_main_program(),
                           feed={'X': x_np},
                           fetch_list=[clone_x])[0]

        self.assertTrue(np.array_equal(y_np, x_np), True)

220 221

class TestAssignOpErrorApi(unittest.TestCase):
222

223
    def test_errors(self):
224
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
225 226
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
227 228
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
229 230
            self.assertRaises(TypeError, paddle.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
231 232
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, paddle.assign, x2)
233
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
234

235 236 237 238 239 240 241
    def test_type_error(self):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            x = [paddle.randn([3, 3]), paddle.randn([3, 3])]
            # not support to assign list(var)
            self.assertRaises(TypeError, paddle.assign, x)

242

Y
Yu Yang 已提交
243
if __name__ == '__main__':
244
    paddle.enable_static()
Y
Yu Yang 已提交
245
    unittest.main()