test_pool2d_op.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
C
chengduoZH 已提交
22 23


24 25 26 27 28
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
29 30
                             ceil_mode=False,
                             exclusive=True):
C
chengduoZH 已提交
31
    N, C, H, W = x.shape
C
chengduoZH 已提交
32 33
    if global_pool == 1:
        ksize = [H, W]
34
    H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
35 36
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
37
    W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
38 39
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
40
    out = np.zeros((N, C, H_out, W_out))
41 42
    for i in range(H_out):
        for j in range(W_out):
C
chengduoZH 已提交
43 44 45 46 47 48 49 50 51 52
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


53 54 55 56 57
def avg_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
58 59
                             ceil_mode=False,
                             exclusive=True):
C
chengduoZH 已提交
60
    N, C, H, W = x.shape
C
chengduoZH 已提交
61 62
    if global_pool == 1:
        ksize = [H, W]
63
    H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
64 65
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
66
    W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
67 68
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
69
    out = np.zeros((N, C, H_out, W_out))
70 71
    for i in range(H_out):
        for j in range(W_out):
C
chengduoZH 已提交
72 73 74 75 76 77
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

78 79 80
            field_size = ((r_end - r_start) * (c_end - c_start)) if exclusive \
                            else (ksize[0] * ksize[1])
            out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
C
chengduoZH 已提交
81 82 83 84 85
    return out


class TestPool2d_Op(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
86
        self.op_type = "pool2d"
87
        self.use_cudnn = False
88
        self.use_mkldnn = False
K
Kexin Zhao 已提交
89
        self.dtype = np.float32
C
chengduoZH 已提交
90
        self.init_test_case()
C
chengduoZH 已提交
91
        self.init_global_pool()
K
Kexin Zhao 已提交
92
        self.init_kernel_type()
C
chengduoZH 已提交
93
        self.init_pool_type()
94
        self.init_ceil_mode()
95
        self.init_exclusive()
C
fix bug  
chengduoZH 已提交
96 97
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
K
Kexin Zhao 已提交
98
        input = np.random.random(self.shape).astype(self.dtype)
99 100 101
        output = self.pool2D_forward_naive(
            input, self.ksize, self.strides, self.paddings, self.global_pool,
            self.ceil_mode, self.exclusive).astype(self.dtype)
K
Kexin Zhao 已提交
102
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
103 104 105 106 107

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
108 109
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
110
            'use_cudnn': self.use_cudnn,
111
            'use_mkldnn': self.use_mkldnn,
112
            'ceil_mode': self.ceil_mode,
113 114
            'data_format':
            'AnyLayout',  # TODO(dzhwinter) : should be fix latter
115
            'exclusive': self.exclusive
C
chengduoZH 已提交
116 117
        }

K
Kexin Zhao 已提交
118
        self.outputs = {'Out': output}
C
chengduoZH 已提交
119

120 121 122
    def testcudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
123
    def test_check_output(self):
124
        if self.testcudnn():
125 126 127 128
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
129 130

    def test_check_grad(self):
K
Kexin Zhao 已提交
131 132
        if self.dtype == np.float16:
            return
133
        if self.testcudnn() and self.pool_type != "max":
134 135 136 137
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
138
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
139

C
chengduoZH 已提交
140
    def init_test_case(self):
C
chengduoZH 已提交
141 142 143 144 145
        self.shape = [2, 3, 5, 5]
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0]

K
Kexin Zhao 已提交
146 147
    def init_kernel_type(self):
        pass
C
chengduoZH 已提交
148 149 150

    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
151 152 153 154
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
155

156 157 158
    def init_ceil_mode(self):
        self.ceil_mode = False

159 160 161
    def init_exclusive(self):
        self.exclusive = True

C
chengduoZH 已提交
162

C
chengduoZH 已提交
163
class TestCase1(TestPool2d_Op):
C
chengduoZH 已提交
164
    def init_test_case(self):
C
chengduoZH 已提交
165
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
166 167
        self.ksize = [3, 3]
        self.strides = [1, 1]
C
chengduoZH 已提交
168
        self.paddings = [0, 0]
C
chengduoZH 已提交
169

C
chengduoZH 已提交
170 171
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
172 173 174 175
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
176

C
chengduoZH 已提交
177

C
chengduoZH 已提交
178
class TestCase2(TestPool2d_Op):
C
chengduoZH 已提交
179
    def init_test_case(self):
C
chengduoZH 已提交
180
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
181 182 183 184
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1]

C
chengduoZH 已提交
185 186
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
187
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
188

C
chengduoZH 已提交
189 190
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
191

C
chengduoZH 已提交
192

C
chengduoZH 已提交
193
class TestCase3(TestPool2d_Op):
C
chengduoZH 已提交
194 195
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
196
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
197

C
chengduoZH 已提交
198 199

class TestCase4(TestCase1):
C
chengduoZH 已提交
200 201 202 203
    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
204 205

class TestCase5(TestCase2):
C
chengduoZH 已提交
206 207
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
208
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
209 210


211 212
#--------------------test pool2d--------------------
class TestCUDNNCase1(TestPool2d_Op):
K
Kexin Zhao 已提交
213
    def init_kernel_type(self):
214
        self.use_cudnn = True
C
chengduoZH 已提交
215 216


K
Kexin Zhao 已提交
217
class TestFP16CUDNNCase1(TestPool2d_Op):
K
Kexin Zhao 已提交
218
    def init_kernel_type(self):
K
Kexin Zhao 已提交
219 220 221 222 223 224 225 226 227 228
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)


229
class TestCUDNNCase2(TestCase1):
K
Kexin Zhao 已提交
230
    def init_kernel_type(self):
231
        self.use_cudnn = True
C
chengduoZH 已提交
232 233


K
Kexin Zhao 已提交
234
class TestFP16CUDNNCase2(TestCase1):
K
Kexin Zhao 已提交
235
    def init_kernel_type(self):
K
Kexin Zhao 已提交
236 237 238 239 240 241 242 243 244 245
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)


246
class TestCUDNNCase3(TestCase2):
K
Kexin Zhao 已提交
247
    def init_kernel_type(self):
248
        self.use_cudnn = True
C
chengduoZH 已提交
249 250


K
Kexin Zhao 已提交
251
class TestFP16CUDNNCase3(TestCase2):
K
Kexin Zhao 已提交
252
    def init_kernel_type(self):
K
Kexin Zhao 已提交
253 254 255 256 257 258 259 260 261 262
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)


263
class TestCUDNNCase4(TestCase3):
K
Kexin Zhao 已提交
264
    def init_kernel_type(self):
265
        self.use_cudnn = True
C
chengduoZH 已提交
266 267


K
Kexin Zhao 已提交
268
class TestFP16CUDNNCase4(TestCase3):
K
Kexin Zhao 已提交
269
    def init_kernel_type(self):
K
Kexin Zhao 已提交
270 271 272 273 274 275 276 277 278 279
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)


280
class TestCUDNNCase5(TestCase4):
K
Kexin Zhao 已提交
281
    def init_kernel_type(self):
282
        self.use_cudnn = True
C
chengduoZH 已提交
283

C
chengduoZH 已提交
284

K
Kexin Zhao 已提交
285
class TestFP16CUDNNCase5(TestCase4):
K
Kexin Zhao 已提交
286
    def init_kernel_type(self):
K
Kexin Zhao 已提交
287 288 289 290 291 292 293 294 295 296
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)


297
class TestCUDNNCase6(TestCase5):
K
Kexin Zhao 已提交
298
    def init_kernel_type(self):
299
        self.use_cudnn = True
C
chengduoZH 已提交
300

C
chengduoZH 已提交
301

K
Kexin Zhao 已提交
302
class TestFP16CUDNNCase6(TestCase5):
K
Kexin Zhao 已提交
303
    def init_kernel_type(self):
K
Kexin Zhao 已提交
304 305 306 307 308 309 310 311 312 313
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
class TestCeilModeCase1(TestCUDNNCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase2(TestCUDNNCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase3(TestCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase4(TestCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True

333

334 335 336 337
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

338

339 340 341 342
class TestCUDNNAvgInclude(TestCUDNNCase3):
    def init_exclusive(self):
        self.exclusive = False

343

C
chengduoZH 已提交
344 345
if __name__ == '__main__':
    unittest.main()