optimizer.py 305.8 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
21

22

23 24 25 26 27 28 29 30 31
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
32

33 34
from . import framework
from . import layers
35
from . import unique_name
36 37 38 39 40 41
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
42 43
from .framework import program_guard
from .layer_helper import LayerHelper
44
from .dygraph import base as imperative_base
45
from .dygraph import no_grad
46 47 48 49
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
50 51 52
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
53
from functools import cmp_to_key
54
from .wrapped_decorator import signature_safe_contextmanager
55
import warnings
56
from paddle import _C_ops, _legacy_C_ops
57 58 59 60
from ..fluid.framework import (
    in_dygraph_mode,
    _current_expected_place,
)
61

62
__all__ = [
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
90
]
Q
Qiao Longfei 已提交
91 92


93
class Optimizer:
Q
Qiao Longfei 已提交
94 95 96
    """Optimizer Base class.

    Define the common interface of an optimizer.
97 98
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
99 100
    """

101
    @imperative_base.no_grad
102 103 104 105 106 107 108 109 110 111
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
112 113
        """
        Args:
114 115
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
116 117
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
118
        # Because of the loop import, so place it in the function body
119
        from paddle.optimizer.lr import LRScheduler
120 121 122 123

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
124
        self._name = name
姜永久 已提交
125
        if in_dygraph_mode():
126 127 128
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
129
                raise TypeError(
130
                    "learning rate should be float or LRScheduler, got %s here"
131 132
                    % type(learning_rate)
                )
133
            if self._parameter_list is None:
134 135 136
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
137 138 139 140 141 142
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
143 144
                            % regularization.__str__()
                        )
145
                        break
M
minqiyang 已提交
146
        else:
147 148 149
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
150
                raise TypeError(
151
                    "learning rate should be float or LRScheduler, got %s here"
152 153
                    % type(learning_rate)
                )
M
minqiyang 已提交
154

155
        if grad_clip is not None:
156
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
157 158 159
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
160
        self.regularization = regularization
161
        self._grad_clip = grad_clip
162
        self._learning_rate = learning_rate
163 164
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
165

D
dzhwinter 已提交
166
        self._dtype = None
L
Leo Chen 已提交
167 168 169 170
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

171
        # each program should have a independent learning rate
172
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
173
        self._learning_rate_map = dict()
174
        if isinstance(self._learning_rate, framework.Variable):
175
            self._learning_rate_map[
176 177
                framework.default_main_program()
            ] = self._learning_rate
178 179 180 181 182
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
183 184
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
185
        self.helper = LayerHelper(self.__class__.__name__)
186
        self._opti_name_list = []
H
hong 已提交
187
        self._accumulators_holder = {}
188
        self._param_device_map = dict()
189 190
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
191
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
192 193
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
194 195 196 197

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
198 199
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
200 201 202

        Args: None
        Return:
T
tianshuo78520a 已提交
203
            state_dict(dict) : dict contains all the variable used by optimizer
204

H
hong 已提交
205 206 207 208
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
209
                import paddle
210 211

                with fluid.dygraph.guard():
212
                    emb = paddle.nn.Embedding(10, 10)
213 214 215

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
216 217

        '''
218
        from paddle.optimizer.lr import LRScheduler
219

H
hong 已提交
220 221 222 223
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
224 225
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
226
        # global step if use lr decay
227
        if isinstance(self._learning_rate, LRScheduler):
228 229
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
230
        if isinstance(self._learning_rate, LearningRateDecay):
231 232 233 234
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
235 236 237
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
238

239
                paddle.tensor.fill_constant(
240 241
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
242

243
                state_dict['global_step'] = var_temp
H
hong 已提交
244 245 246
        return state_dict

    @framework.dygraph_only
247
    def set_state_dict(self, state_dict):
H
hong 已提交
248
        '''
T
tianshuo78520a 已提交
249
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
250

251
        Args:
H
hong 已提交
252 253 254
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
255

H
hong 已提交
256 257
        Examples:
            .. code-block:: python
258

259
                import paddle
260 261 262

                paddle.disable_static()

263
                emb = paddle.nn.Embedding(10, 10)
264

265
                state_dict = emb.state_dict()
266
                paddle.save(state_dict, "paddle_dy.pdparams")
267

268
                scheduler = paddle.optimizer.lr.NoamDecay(
269 270 271 272
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
273
                state_dict = adam.state_dict()
274
                paddle.save(state_dict, "paddle_dy.pdopt")
275

276 277
                para_state_dict = paddle.load("paddle_dy.pdparams")
                opti_state_dict = paddle.load("paddle_dy.pdopt")
H
hong 已提交
278
        '''
279
        from paddle.optimizer.lr import LRScheduler
280

281
        if isinstance(self._learning_rate, LRScheduler):
282
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
283 284

        if isinstance(self._learning_rate, LearningRateDecay):
285 286 287
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
288 289 290
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
291 292 293 294 295
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
296 297 298 299 300
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
301 302 303

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
304 305 306 307 308
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
309 310 311 312
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
313 314
                        type(global_step),
                    )
H
hong 已提交
315

316 317 318 319 320 321 322 323 324 325 326 327
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
328 329 330
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
331

332 333 334 335 336
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
337

338 339 340 341 342
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
343 344 345

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
346 347 348
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
349 350 351
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
352
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
353

354
        for k, v in self._global_accumulators.items():
355 356 357
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
358
            _load_state_para(state_dict, v)
359

360 361 362
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

363 364
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
365

366 367 368 369 370 371 372 373 374
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
375
    def _create_global_learning_rate(self):
376
        from paddle.optimizer.lr import LRScheduler
377

378
        if isinstance(self._learning_rate, LRScheduler):
379 380 381 382 383 384 385 386 387 388
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
389 390
                    dtype='float32' if self._dtype is None else self._dtype,
                )
391 392 393
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
394
                self._learning_rate_map[
395 396
                    framework.default_main_program()
                ] = lr_var
397 398 399

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
400 401
                lr_var,
                initializer=paddle.nn.initializer.Constant(value=lr_value),
402
            )
403 404
            return

405 406 407
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
408 409 410 411 412
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
413 414
                    self._learning_rate_map[
                        framework.default_main_program()
415
                    ] = paddle.static.create_global_var(
M
minqiyang 已提交
416 417 418 419
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
420 421
                        persistable=True,
                    )
422
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
423
            elif isinstance(self._learning_rate, LearningRateDecay):
424
                self._learning_rate_map[
425 426
                    framework.default_main_program()
                ] = self._learning_rate()
427
            else:
Q
qiaolongfei 已提交
428
                raise TypeError(
429 430
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
431
        else:
432 433 434 435
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
436 437 438 439 440 441
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
442

443
            # create learning rate in the current main program
444
            self._learning_rate_map[
445
                framework.default_main_program()
446
            ] = paddle.static.create_global_var(
447 448 449 450 451 452
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
453

454 455 456 457
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
458

459 460 461 462 463 464 465 466
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
467

468 469 470
        Examples:
            .. code-block:: python

471
                import paddle
472
                import paddle.fluid as fluid
473
                import paddle
474

475
                with fluid.dygraph.guard():
476
                    linear = paddle.nn.Linear(10, 10)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
495
                    lr_var = paddle.static.create_global_var(
496 497 498 499 500 501 502 503 504 505 506 507 508
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
509 510
                % (type(value))
            )
511 512 513 514 515 516 517 518
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
519 520
                if in_dygraph_mode():
                    place = _current_expected_place()
521 522 523 524 525 526 527
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
528
                else:
529 530 531 532 533 534 535 536 537 538 539 540 541
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
542
        else:
543 544 545
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
546 547
            self._learning_rate_map[framework.default_main_program()] = value

548 549 550
    @framework.dygraph_only
    def current_step_lr(self):
        """
551
        :api_attr: imperative
552

553 554 555 556 557 558 559 560 561 562 563
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
564
                import paddle
565 566 567

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
568
                    emb = paddle.nn.Embedding(10, 10)
569 570 571 572 573 574 575
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
576
                    linear = paddle.nn.Linear(10, 10)
577 578
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
579
                    loss = paddle.mean(out)
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
598
        if isinstance(current_lr, framework.Variable):
599
            return float(current_lr)
600 601 602

        if isinstance(self._learning_rate, float):
            return self._learning_rate
603 604
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
605
            return float(step_lr)
606 607 608 609 610
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
611
                return float(step_lr)
612

Y
yuyang18 已提交
613
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
614 615 616 617
        """
        get global decayed learning rate
        :return:
        """
618 619
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
620
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
621

Q
Qiao Longfei 已提交
622
    def _append_optimize_op(self, block, param_and_grad):
623
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
624 625
        raise NotImplementedError()

626 627 628 629
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
630 631
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
632
        else:
W
Wu Yi 已提交
633
            if param_lr == 1.0:
Y
yuyang18 已提交
634
                return self._global_learning_rate()
W
Wu Yi 已提交
635
            else:
X
Xin Pan 已提交
636
                with default_main_program()._lr_schedule_guard(
637 638
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
639
                    return self._global_learning_rate() * param_lr
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

683 684 685 686 687 688
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
689
        """
690 691
        pass

692
    def _finish_update(self, block, parameters_and_grads):
693 694 695 696 697 698 699 700
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
701
            None
702 703 704
        """
        pass

705 706 707 708 709 710 711 712 713 714
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
715 716 717 718 719 720 721 722 723
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
724 725
        if self._name is not None:
            name = self._name + "_" + name
726 727 728 729
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
姜永久 已提交
730
            if in_dygraph_mode():
X
polish  
Xin Pan 已提交
731
                return self._accumulators[name][param.name]
732 733
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
734 735 736
                    name, param.name
                )
            )
737
        if shape is None:
738
            shape = param.shape
Q
Qiao Longfei 已提交
739
        assert isinstance(self.helper, LayerHelper)
740 741 742 743 744

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
745
        var = self.helper.create_global_variable(
746
            name=var_name,
Q
Qiao Longfei 已提交
747
            persistable=True,
F
fengjiayi 已提交
748
            dtype=dtype or param.dtype,
749
            type=core.VarDesc.VarType.LOD_TENSOR
姜永久 已提交
750
            if in_dygraph_mode()
751
            else (param.type if type is None else type),
H
hong 已提交
752
            shape=shape,
753 754
            belong_to_optimizer=True,
        )
755 756 757 758
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
759 760 761 762
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
763
            )
H
hong 已提交
764

姜永久 已提交
765
        if in_dygraph_mode():
H
hong 已提交
766
            if len(self._accumulators_holder) > 0:
767 768 769 770 771
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
772 773
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
774
        self._accumulators[name][param.name] = var
775
        return var
776

777 778 779 780 781 782 783 784 785
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
786 787 788 789 790 791 792 793 794 795 796 797 798
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
799
        if name in self._global_accumulators:
姜永久 已提交
800
            if in_dygraph_mode():
801 802
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
803
        if shape is None:
804 805 806 807 808 809 810 811 812 813 814 815 816
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
817 818
            belong_to_optimizer=True,
        )
819 820 821 822
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
823 824 825 826
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
827
            )
828

姜永久 已提交
829
        if in_dygraph_mode():
830
            if len(self._accumulators_holder) > 0:
831 832 833 834 835
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
836 837 838 839 840
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

841 842 843 844 845 846 847 848
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
849
            accumulator variable
850
        """
W
whs 已提交
851 852
        if self._name is not None:
            name = self._name + "_" + name
853 854 855 856
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
857 858
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
859 860 861
                    name, param.name
                )
            )
862 863
        return self._accumulators[name][param.name]

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

892 893 894 895 896 897 898 899 900 901 902
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
903
        if name not in self._global_accumulators:
904 905 906
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

907 908 909 910 911
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
912 913
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
914 915 916 917 918
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
919 920
                            device_attr_name
                        )
921
                        break
922 923 924 925 926 927 928

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

929
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
930 931 932
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
933
          parameters_and_grads(list(tuple(Variable, Variable))):
934
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
935 936

        Returns:
937
          return_op_list: a list of operators that will complete one step of
938 939 940
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
941
        """
942 943 944 945 946
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
947
        # for parameters and extend _finish_update method to add custom ops.
948

949
        # Allways called under program_guard use global block as loss block
950 951 952
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

953
        global_block = framework.default_main_program().global_block()
954 955 956
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
957 958 959
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
960
            target_block = framework.default_main_program().blocks[
961 962
                current_block.backward_block_idx
            ]
963 964

        start = len(target_block.ops)
965

966
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
967
        self._create_accumulators(
968 969
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
970 971
        self._create_global_learning_rate()

姜永久 已提交
972
        if in_dygraph_mode():
W
wanghuancoder 已提交
973 974 975 976 977 978 979 980 981 982 983 984
            found_inf = self._get_auxiliary_var('found_inf')
            if found_inf:
                if isinstance(found_inf, core.eager.Tensor):
                    self._set_auxiliary_var('found_inf', True)
            else:
                if isinstance(found_inf, core.eager.Tensor):
                    self._set_auxiliary_var('found_inf', False)
                for param_and_grad in parameters_and_grads:
                    if param_and_grad[1] is None:
                        continue
                    if param_and_grad[0].trainable is True:
                        self._append_optimize_op(target_block, param_and_grad)
985 986 987 988 989
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
990 991
                    param_and_grad
                ), name_scope("optimizer"):
992
                    if param_and_grad[0].trainable is True:
993
                        device = self._get_device_for_param(
994 995
                            param_and_grad[0].name
                        )
996 997
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
998 999
                                target_block, param_and_grad
                            )
1000 1001 1002

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
1003
        self._finish_update(target_block, parameters_and_grads)
1004

1005 1006
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
1007 1008

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
1018 1019 1020 1021
        from paddle.distributed.distribute_lookup_table import (
            find_distributed_lookup_table,
        )

1022 1023
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
1024 1025 1026 1027 1028 1029 1030 1031
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
1032 1033
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
1034 1035 1036 1037 1038 1039
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
1040
            param_and_grad = [table_param, table_grad]
1041 1042 1043
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
1044 1045 1046 1047 1048 1049 1050
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
1051
                        "LearningRate": self._create_param_lr(param_and_grad),
1052
                    },
1053 1054
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
1055 1056
        return new_param_grads, (table_param, table_grad), sgd_op

1057 1058 1059 1060 1061 1062 1063 1064
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
1065
        """
1066
        The first part of ``minimize``, do auto-diff to append backward operations for
1067 1068 1069
        the current program.

        Args:
1070 1071 1072 1073
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1074
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1075 1076
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1077
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1078 1079 1080
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1081

1082
        Return:
1083 1084
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1085

1086
        Examples:
1087
            See examples in ``apply_gradients``.
1088
        """
1089
        act_no_grad_set = None
姜永久 已提交
1090
        if in_dygraph_mode():
1091
            pass
L
Leo Chen 已提交
1092 1093
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1094

L
Leo Chen 已提交
1095 1096 1097 1098
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

姜永久 已提交
1099
        if in_dygraph_mode():
1100 1101 1102
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1103

C
chengduo 已提交
1104
            params_grads = []
1105
            for param in parameter_list:
C
chengduo 已提交
1106 1107
                if not param.trainable:
                    continue
1108
                if param._grad_ivar() is not None:
C
chengduo 已提交
1109
                    # create gradient variable
1110
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1111
                    params_grads.append((param, grad_var))
1112
        else:
C
chengduo 已提交
1113
            if callbacks is None:
1114
                callbacks = [paddle.nn.clip.error_clip_callback]
C
chengduo 已提交
1115
            else:
1116
                assert isinstance(callbacks, list)
C
chengduo 已提交
1117
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1118 1119
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
1120
                "Maybe that you should call paddle.mean to process the current loss.".format(
1121 1122 1123 1124 1125 1126
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1127
            with program_guard(program, startup_program):
1128 1129 1130
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1131
        return params_grads
1132

1133
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1134
        """Create and add backward regularization Operators
1135

1136 1137 1138
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1139
        if grad is None or (
1140 1141 1142 1143 1144 1145
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

姜永久 已提交
1156
        if in_dygraph_mode():
1157
            return _legacy_C_ops.sum([grad, regularization_term])
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1170 1171
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1172 1173 1174

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1175
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1176 1177 1178

        return new_grad

1179 1180 1181
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1182
        r"""Create and add backward regularization Operators
1183

1184 1185 1186 1187
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1188

1189 1190 1191 1192 1193
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1194

1195 1196 1197
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1198

1199 1200 1201 1202
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
姜永久 已提交
1203
        if in_dygraph_mode():
1204
            for param, grad in parameters_and_grads:
1205
                new_grad = self._create_regularization_of_grad(
1206 1207
                    param, grad, regularization
                )
1208 1209 1210 1211 1212
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1213 1214 1215 1216 1217
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1218 1219 1220 1221
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1222 1223
                            % regularization.__str__()
                        )
1224 1225
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1226 1227
                            param, grad, regularization
                        )
1228 1229 1230
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1231 1232 1233 1234 1235 1236 1237
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1238 1239 1240 1241
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1242 1243
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1244 1245
                    "the regularizer is set".format(p.name)
                )
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1260 1261
            belong_to_optimizer=True,
        )
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1272 1273
            belong_to_optimizer=True,
        )
1274 1275

        with program_guard(default_main_program()):
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1305

1306
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1307
        # so the shape of flatten_param and flatten_grad will be inferred.
1308
        self.helper.set_variable_initializer(
1309 1310
            flatten_param,
            initializer=paddle.nn.initializer.Constant(0.0),
1311 1312
        )
        self.helper.set_variable_initializer(
1313 1314
            flatten_grad,
            initializer=paddle.nn.initializer.Constant(0.0),
1315
        )
1316 1317 1318

        return [(flatten_param, flatten_grad)]

1319 1320 1321 1322 1323 1324 1325
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1326

1327 1328
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1329

1330 1331 1332
        Examples:
            .. code-block:: python

1333
                import paddle.fluid as fluid
1334 1335 1336 1337 1338 1339 1340 1341 1342
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1343 1344
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1345
            if self._grad_clip is None or isinstance(
1346
                self._grad_clip, paddle.nn.ClipGradByGlobalNorm
1347
            ):
1348 1349
                params_grads = self.flatten_param_grads(params_grads)

1350
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1351 1352 1353
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
1354
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
1355 1356

        # Add regularization if any
1357 1358 1359
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1360 1361 1362 1363

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
姜永久 已提交
1376
        if in_dygraph_mode():
1377 1378 1379 1380
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1381 1382
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1383
                params_grads = self.append_regularization_ops(
1384 1385
                    params_grads, self.regularization
                )
C
chengduo 已提交
1386 1387 1388 1389 1390 1391 1392
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1393
    def _get_no_grad_set(self, loss, no_grad_set=None):
1394
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1395 1396
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1397 1398
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1399 1400 1401 1402 1403
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1404 1405 1406 1407
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1408 1409

        If not, new gradient will accumulat on previous gradient.
1410

1411 1412
        Returns:
            None
1413

1414 1415 1416 1417
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1418
                import paddle
1419 1420 1421 1422 1423
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
1424
                    linear = paddle.nn.Linear(13, 5)
1425
                    # This can be any optimizer supported by dygraph.
1426
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1438
    @imperative_base.no_grad
1439 1440 1441
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1442
        """
1443
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1444

1445
        Args:
1446 1447 1448 1449
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1450
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1451 1452
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1453
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1454
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1455

1456
        Returns:
1457 1458 1459
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1460 1461
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1462
            ``fetch_list`` before run, see details in ``Executor``.
1463 1464 1465

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1466
        """
C
chengduo 已提交
1467
        assert isinstance(loss, Variable), "The loss should be an Variable."
1468

1469 1470 1471
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1472

1473 1474 1475 1476 1477 1478
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1479

1480 1481 1482
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1483

Q
Qiao Longfei 已提交
1484
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1485 1486 1487


class SGDOptimizer(Optimizer):
1488
    r"""
Q
qiaolongfei 已提交
1489 1490 1491 1492 1493 1494
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1495 1496 1497
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1498
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1499
            This parameter is required in dygraph mode. \
1500
            The default value is None in static graph mode, at this time all parameters will be updated.
1501 1502 1503 1504 1505
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1506 1507 1508
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1509
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1510 1511
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1512 1513 1514 1515

    Examples:
        .. code-block:: python

1516 1517 1518 1519
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1520
            paddle.enable_static()
1521 1522 1523
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1524 1525
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1526
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1527
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1528
                avg_cost = paddle.mean(cost)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1542 1543
    """

1544 1545 1546 1547 1548 1549 1550 1551 1552
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1553
        assert learning_rate is not None
1554
        super().__init__(
1555 1556 1557 1558 1559 1560
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1561
        self.type = "sgd"
1562
        self._use_mkldnn = False
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
1573
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
1574 1575
                master_p = self._create_master_weight(p)
                continue
1576
            if (
1577
                self._is_dtype_fp16_or_bf16(p.dtype)
1578 1579
                and not self._multi_precision
            ):
1580
                warnings.warn(
1581
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
1582 1583
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1584

1585
    @no_grad
1586
    def _append_optimize_op(self, block, param_and_grad):
1587

1588 1589
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
1590 1591 1592 1593 1594 1595
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1596

1597
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1598
        if in_dygraph_mode():
1599 1600 1601 1602 1603 1604 1605
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1606
            return None
姜永久 已提交
1607 1608 1609 1610 1611 1612 1613 1614
        else:
            assert isinstance(block, framework.Block)
            # create the optimize op
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
            }
1615

姜永久 已提交
1616
            outputs = {"ParamOut": param_and_grad[0]}
1617

姜永久 已提交
1618
            attrs = {"multi_precision": find_master}
1619

姜永久 已提交
1620 1621 1622
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
1623

姜永久 已提交
1624 1625 1626 1627 1628 1629 1630
            sgd_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
Q
Qiao Longfei 已提交
1631

姜永久 已提交
1632
            return sgd_op
1633 1634 1635


class MomentumOptimizer(Optimizer):
1636
    r"""
Q
qiaolongfei 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1650
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1651 1652 1653

        & else:

Q
qiaolongfei 已提交
1654
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1655

1656 1657 1658 1659
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1660
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1661
            This parameter is required in dygraph mode. \
1662
            The default value is None in static graph mode, at this time all parameters will be updated.
1663
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1664 1665 1666 1667 1668
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1669 1670 1671
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1672
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1673 1674
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1675 1676 1677 1678

    Examples:
        .. code-block:: python

1679 1680 1681 1682
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1683
            paddle.enable_static()
1684 1685 1686
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1687 1688
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1689
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1690
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1691
                avg_cost = paddle.mean(cost)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1705 1706 1707
    """
    _velocity_acc_str = "velocity"

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1718 1719
        assert learning_rate is not None
        assert momentum is not None
1720
        super().__init__(
1721 1722 1723 1724 1725 1726
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1727 1728
        self.type = "momentum"
        self._momentum = momentum
1729
        self._use_nesterov = bool(use_nesterov)
1730 1731 1732 1733 1734

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1735
            self._add_accumulator(self._velocity_acc_str, p)
1736 1737 1738 1739

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1740 1741 1742
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1743
        lr = self._create_param_lr(param_and_grad)
1744
        master_weight = None
姜永久 已提交
1745
        if in_dygraph_mode():
1746
            _, _, _ = _legacy_C_ops.momentum(
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1760
            return None
姜永久 已提交
1761 1762 1763 1764 1765 1766 1767 1768
        else:
            attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "Velocity": [velocity_acc],
                "LearningRate": [lr],
            }
1769

姜永久 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            outputs = {
                "ParamOut": [param_and_grad[0]],
                "VelocityOut": [velocity_acc],
            }
            # create the momentum optimize op
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1782

姜永久 已提交
1783
            return momentum_op
1784 1785


1786
class LarsMomentumOptimizer(Optimizer):
1787
    r"""
1788 1789 1790 1791 1792 1793 1794 1795 1796
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1797
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1798 1799 1800

        & param = param - velocity

1801 1802 1803 1804 1805 1806
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1807
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1808
            This parameter is required in dygraph mode. \
1809
            The default value is None in static graph mode, at this time all parameters will be updated.
1810 1811 1812 1813 1814
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1815 1816 1817
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1818
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1819 1820
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1821 1822
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1823 1824 1825
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1826

1827 1828 1829
    Examples:
        .. code-block:: python

1830
            import paddle
1831 1832 1833
            import paddle.fluid as fluid
            import numpy as np

1834
            paddle.enable_static()
1835
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
G
GGBond8488 已提交
1836 1837
            inp = paddle.static.data(
                name="inp", shape=[2, 2], dtype='float32')
C
Charles-hit 已提交
1838
            out = paddle.static.nn.fc(inp, size=3)
1839
            out = paddle.sum(out)
1840 1841 1842 1843 1844 1845 1846 1847
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1848 1849 1850
    """
    _velocity_acc_str = "velocity"

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1866 1867
        assert learning_rate is not None
        assert momentum is not None
1868
        super().__init__(
1869 1870 1871 1872 1873 1874
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1875 1876 1877 1878
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1879 1880 1881 1882 1883
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1884 1885 1886 1887
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

1888 1889 1890 1891
    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1892
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
1893 1894 1895
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1896
            if (
1897
                self._is_dtype_fp16_or_bf16(p.dtype)
1898 1899
                and not self._multi_precision
            ):
1900
                warnings.warn(
1901
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
1902 1903
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1904 1905 1906 1907
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1908 1909 1910 1911 1912 1913 1914 1915
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1916
        velocity_acc = self._get_accumulator_master(
1917 1918
            self._velocity_acc_str, param_and_grad[0]
        )
1919 1920
        lr = self._create_param_lr(param_and_grad)

1921 1922
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
1923 1924 1925 1926 1927 1928
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1929 1930 1931

        attrs = {
            "mu": self._momentum,
1932
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1933
            "lars_weight_decay": [_lars_weight_decay],
1934
            "multi_precision": find_master,
L
limingshu 已提交
1935
            "epsilon": self._epsilon,
1936
            "rescale_grad": self._rescale_grad,
1937 1938 1939 1940 1941 1942
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1943
            "LearningRate": lr,
1944 1945 1946 1947 1948 1949 1950 1951
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

姜永久 已提交
1952
        if in_dygraph_mode():
1953
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1973 1974
        else:
            # create the momentum optimize op
1975 1976 1977 1978 1979 1980 1981
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1982

1983
            return momentum_op
1984 1985


1986
class AdagradOptimizer(Optimizer):
1987
    r"""
1988 1989
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1990

1991
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1992 1993 1994 1995 1996 1997 1998

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1999 2000 2001 2002 2003 2004
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2005 2006 2007
    for numerical stability to avoid the division by zero error.

    Args:
2008 2009 2010 2011
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2012
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2013
            This parameter is required in dygraph mode. \
2014
            The default value is None in static graph mode, at this time all parameters will be updated.
2015 2016 2017 2018 2019
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2020 2021 2022
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2023
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2024 2025 2026 2027 2028
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2029 2030 2031 2032

    Examples:
        .. code-block:: python

2033
            import paddle
2034
            import numpy as np
2035
            import paddle.fluid as fluid
2036

2037
            paddle.enable_static()
2038
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2039
            inp = paddle.static.data(name="inp", shape=[2, 2], dtype="float32")
C
Charles-hit 已提交
2040
            out = paddle.static.nn.fc(inp, size=3)
2041
            out = paddle.sum(out)
2042
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2043 2044 2045 2046 2047 2048 2049
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2050 2051 2052
    """
    _moment_acc_str = "moment"

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2063 2064
        assert learning_rate is not None
        assert epsilon is not None
2065
        super().__init__(
2066 2067 2068 2069 2070 2071
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2072
        self.type = "adagrad"
2073
        self._multi_precision = False
2074
        self._epsilon = epsilon
2075
        self.initial_accumulator_value = initial_accumulator_value
2076 2077
        self._master_weights = {}

2078 2079 2080 2081
    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2082
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
2083
                master_p = self._create_master_weight(p)
2084 2085 2086 2087 2088
                self._add_accumulator(
                    self._moment_acc_str,
                    master_p,
                    fill_value=self.initial_accumulator_value,
                )
2089 2090
                continue
            if (
2091
                self._is_dtype_fp16_or_bf16(p.dtype)
2092 2093 2094
                and not self._multi_precision
            ):
                warnings.warn(
2095
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
2096 2097
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2098 2099 2100 2101 2102
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2103 2104 2105 2106

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2107
        moment_acc = self._get_accumulator_master(
2108 2109
            self._moment_acc_str, param_and_grad[0]
        )
2110

2111 2112
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
2113 2114 2115 2116 2117 2118 2119
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )

C
caozhou 已提交
2120
        if in_dygraph_mode():
2121 2122 2123 2124 2125
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
2126
                master_weight,
2127
                self._epsilon,
2128
                find_master,
2129
            )
C
caozhou 已提交
2130
            return None
2131 2132
        else:
            # Create the adagrad optimizer op
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment_acc,
            }

            attrs = {"epsilon": self._epsilon, "multi_precision": find_master}

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

2150 2151
            adagrad_op = block.append_op(
                type=self.type,
2152 2153 2154
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2155 2156
                stop_gradient=True,
            )
2157

2158
            return adagrad_op
2159 2160 2161


class AdamOptimizer(Optimizer):
2162
    r"""
T
tianshuo78520a 已提交
2163
    The Adam optimizer uses an optimization described at the end
2164 2165 2166
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2167

2168
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2183 2184
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2185
    Args:
2186 2187
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2188 2189
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2190
            The default value is 0.9.
2191 2192
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2193
            The default value is 0.999.
2194 2195
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2196
            The default value is 1e-08.
H
hong 已提交
2197
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2198
            This parameter is required in dygraph mode. \
2199
            The default value is None in static graph mode, at this time all parameters will be updated.
2200 2201 2202 2203 2204
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2205 2206 2207
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2208
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2219
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2220
            for whole model instead of creating beta_pow for each parameter. Default is false.
2221 2222
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2223
            use same align_size as allocator.
Q
qiaolongfei 已提交
2224 2225 2226 2227

    Examples:
        .. code-block:: python

2228 2229 2230
            import paddle
            import paddle.fluid as fluid

2231
            paddle.enable_static()
2232 2233 2234
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2235 2236
                x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2237
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2238
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2239
                avg_cost = paddle.mean(cost)
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2252

2253 2254 2255 2256 2257 2258 2259
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

2260
            paddle.enable_static()
2261 2262 2263
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2264 2265
                x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2266
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2267
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2268
                avg_cost = paddle.mean(cost)
2269 2270

                # define beta decay variable
2271
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2272 2273
                    global_step = lr_scheduler._decay_step_counter()

2274
                    beta1 = paddle.static.create_global_var(
2275 2276 2277 2278 2279 2280
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
2281
                    beta2 = paddle.static.create_global_var(
2282 2283 2284 2285 2286 2287
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2288
                    epsilon = paddle.static.create_global_var(
2289 2290 2291 2292 2293 2294
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2295 2296 2297 2298

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
2299 2300
                    paddle.assign(decayed_beta1, beta1)
                    paddle.assign(decayed_beta2, beta2)
2301

2302
                    return beta1, beta2, epsilon
2303

2304
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2305 2306
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2307
                                                    beta1=beta1,
2308 2309
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2320 2321 2322
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2323 2324
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2325

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2341 2342 2343 2344
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2345
        super().__init__(
2346 2347 2348 2349 2350 2351 2352 2353
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2354 2355 2356 2357
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2358
        self._lazy_mode = lazy_mode
2359
        self._use_global_beta_pow = use_global_beta_pow
2360 2361 2362 2363 2364 2365

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2366 2367
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2368 2369 2370 2371
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2372 2373 2374
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2375
                    shape=[1],
2376 2377 2378
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2379 2380 2381
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2382 2383 2384
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2385
                    shape=[1],
2386 2387 2388
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2389 2390
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2391
                name=self._beta1_pow_acc_str,
2392 2393 2394
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2395
                shape=[1],
2396 2397 2398
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2399
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2400
                name=self._beta2_pow_acc_str,
2401 2402 2403
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2404
                shape=[1],
2405 2406 2407
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2408 2409 2410 2411

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2412 2413 2414 2415 2416 2417
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2418 2419
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2420 2421
                self._beta1_pow_acc_str
            )
2422
            beta2_pow_acc = self._get_global_accumulator(
2423 2424
                self._beta2_pow_acc_str
            )
2425
        else:
2426 2427 2428 2429 2430 2431
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2432
        lr = self._create_param_lr(param_and_grad)
2433
        # create the adam optimize op
2434

姜永久 已提交
2435
        if in_dygraph_mode():
2436 2437 2438
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
2439
                else self._beta1.item(0)
2440 2441 2442 2443
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
2444
                else self._beta2.item(0)
2445
            )
2446
            master_weight = None
2447
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2475 2476 2477

            return None

2478
        inputs = {
2479 2480
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2481
            "LearningRate": [lr],
2482 2483 2484
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2485
            "Beta2Pow": [beta2_pow_acc],
2486
        }
2487 2488 2489 2490 2491 2492 2493

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2494
        outputs = {
2495 2496 2497 2498 2499
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2500 2501 2502
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2503
            "min_row_size_to_use_multithread": 1000,
2504
            'use_global_beta_pow': self._use_global_beta_pow,
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2515 2516 2517 2518
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2519

2520 2521 2522 2523 2524 2525 2526
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2527 2528 2529

        return adam_op

2530
    def _finish_update(self, block, parameters_and_grads):
2531
        r"""Update beta1_pow and beta2_pow accumulator"""
2532 2533 2534
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2535 2536
                self._beta1_pow_acc_str
            )
2537
            beta2_pow_acc = self._get_global_accumulator(
2538 2539
                self._beta2_pow_acc_str
            )
2540 2541 2542

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2543
                outputs = {"Out": beta1_pow_acc}
2544 2545
                attrs = {}
                if isinstance(self._beta1, Variable):
2546 2547
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2548 2549 2550 2551 2552 2553 2554
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2555 2556
                else:
                    attrs['scale'] = self._beta1
2557 2558 2559 2560 2561 2562 2563
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2564 2565

                inputs = {"X": beta2_pow_acc}
2566
                outputs = {"Out": beta2_pow_acc}
2567 2568
                attrs = {}
                if isinstance(self._beta2, Variable):
2569 2570
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2571 2572 2573 2574 2575 2576 2577
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2578 2579
                else:
                    attrs['scale'] = self._beta2
2580 2581 2582 2583 2584 2585 2586
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2587

2588 2589

class AdamaxOptimizer(Optimizer):
2590
    r"""
2591
    The Adamax optimizer is implemented based on the Adamax Optimization
2592 2593 2594
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2595

2596
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2610
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2611

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2624
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2625
            This parameter is required in dygraph mode. \
2626
            The default value is None in static graph mode, at this time all parameters will be updated.
2627 2628 2629 2630 2631
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2632 2633 2634
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2635
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2636 2637 2638 2639 2640 2641
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2642

2643 2644 2645 2646 2647
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2648 2649
          import paddle
          paddle.enable_static()
2650 2651 2652 2653 2654 2655 2656 2657

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2658
              data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2659
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2660
              loss = paddle.mean(hidden)
2661
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2662 2663 2664 2665 2666 2667 2668 2669 2670
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2671 2672 2673
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2674
    _beta1_pow_acc_str = "beta1_pow_acc"
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2687 2688 2689 2690
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2691
        super().__init__(
2692 2693 2694 2695 2696 2697
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2698 2699 2700 2701
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
2702 2703 2704
        self._multi_precision = False
        self._master_weights = {}

2705 2706 2707
    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
2708
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._moment_acc_str, master_p)
                self._add_accumulator(self._inf_norm_acc_str, master_p)
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=master_p,
                    fill_value=self._beta1,
                    shape=[1],
                )
                continue
            if (
2720
                self._is_dtype_fp16_or_bf16(p.dtype)
2721 2722 2723
                and not self._multi_precision
            ):
                warnings.warn(
2724
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
2725 2726
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
Qiao Longfei 已提交
2727 2728
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2729 2730 2731 2732 2733 2734
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2735 2736 2737 2738

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2739 2740 2741 2742
        moment = self._get_accumulator_master(
            self._moment_acc_str, param_and_grad[0]
        )
        inf_norm = self._get_accumulator_master(
2743 2744
            self._inf_norm_acc_str, param_and_grad[0]
        )
2745
        beta1_pow_acc = self._get_accumulator_master(
2746 2747
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2748

2749 2750
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
2751 2752 2753 2754 2755 2756
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
姜永久 已提交
2757
        if in_dygraph_mode():
2758 2759 2760 2761 2762 2763 2764
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
2765
                master_weight,
2766 2767 2768
                self._beta1,
                self._beta2,
                self._epsilon,
2769
                find_master,
2770
            )
2771 2772
        else:
            # create the adamax optimize op
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": beta1_pow_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm,
            }
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            attrs = {
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "multi_precision": find_master,
            }

2797 2798
            adamax_op = block.append_op(
                type=self.type,
2799 2800 2801
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2802 2803
                stop_gradient=True,
            )
2804

2805
            return adamax_op
2806

2807
    def _finish_update(self, block, parameters_and_grads):
2808
        """Update Beta1 Power accumulator"""
2809
        assert isinstance(block, framework.Block)
2810
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2811
            if grad is None or param.trainable is False:
2812
                continue
2813 2814 2815
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
2816
                beta1_pow_acc = self._get_accumulator_master(
2817 2818
                    self._beta1_pow_acc_str, param
                )
姜永久 已提交
2819 2820
                if in_dygraph_mode():
                    tmp = _C_ops.scale(beta1_pow_acc, self._beta1, 0.0, True)
2821 2822
                    beta1_pow_acc.copy_(tmp, False)
                else:
2823 2824 2825 2826 2827 2828 2829
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2830 2831


2832
class DpsgdOptimizer(Optimizer):
2833
    r"""
2834 2835 2836 2837 2838 2839 2840 2841
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2842 2843
          import paddle
          paddle.enable_static()
2844 2845 2846 2847 2848 2849 2850 2851

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
2852
              data = paddle.static.data(name='X', shape=[-1,1], dtype='float32')
C
Charles-hit 已提交
2853
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2854
              loss = paddle.mean(hidden)
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2872
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2873
            This parameter is required in dygraph mode. \
2874
            The default value is None in static graph mode, at this time all parameters will be updated.
2875 2876 2877 2878
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2879 2880 2881 2882 2883 2884 2885 2886
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
2887 2888 2889 2890
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2891
        super().__init__(
2892 2893
            learning_rate=learning_rate, parameter_list=parameter_list
        )
2894 2895 2896 2897
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2898 2899 2900 2901 2902 2903 2904
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2905 2906 2907 2908 2909

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
2910
        if self._seed is None:
Z
zhongpu 已提交
2911 2912
            self._seed = 0

姜永久 已提交
2913
        if in_dygraph_mode():
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
2928
        else:
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
2945

2946
            return dpsgd_op
2947 2948


2949
class DecayedAdagradOptimizer(Optimizer):
2950
    r"""
2951 2952 2953
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2954

2955
    The parameter ``param_out`` update rule with gradient ``grad``:
2956 2957 2958 2959 2960 2961 2962

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2963 2964 2965 2966
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2967 2968 2969
    stability to avoid the division by zero error.

    Args:
2970 2971 2972 2973 2974
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2975
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2976
            This parameter is required in dygraph mode. \
2977
            The default value is None in static graph mode, at this time all parameters will be updated.
2978 2979 2980 2981 2982
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2983 2984 2985
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2986
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2987 2988 2989 2990 2991 2992
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2993 2994 2995 2996

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
2997
            import paddle
2998 2999
            import paddle.fluid as fluid

C
Charles-hit 已提交
3000
            paddle.enable_static()
3001
            x = paddle.static.data(name='x', shape=[None, 10], dtype='float32')
C
Charles-hit 已提交
3002 3003
            trans = paddle.static.nn.fc(x, 100)
            cost = paddle.mean(trans)
3004
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3005
            optimizer.minimize(cost)
3006 3007 3008
    """
    _moment_acc_str = "moment"

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3019 3020 3021 3022
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3023
        super().__init__(
3024 3025 3026 3027 3028 3029
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3043 3044 3045
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3046

姜永久 已提交
3047
        if in_dygraph_mode():
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3060 3061 3062 3063 3064 3065 3066 3067
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3068
                    "LearningRate": self._create_param_lr(param_and_grad),
3069 3070 3071
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3072
                    "MomentOut": moment_acc,
3073
                },
3074 3075 3076
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3077

3078
            return decayed_adagrad_op
3079 3080


3081
class AdadeltaOptimizer(Optimizer):
3082
    r"""
Z
Zeng Jinle 已提交
3083
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3084

Z
Zeng Jinle 已提交
3085
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3086 3087 3088
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3089

Z
Zeng Jinle 已提交
3090 3091
    .. math::

Z
Zeng Jinle 已提交
3092
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3093

Z
Zeng Jinle 已提交
3094
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3095

Z
Zeng Jinle 已提交
3096
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3097 3098

    Args:
Z
Zeng Jinle 已提交
3099 3100 3101
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3102
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3103
            This parameter is required in dygraph mode. \
3104
            The default value is None in static graph mode, at this time all parameters will be updated.
3105 3106 3107 3108 3109
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3110 3111 3112
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3113
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3114 3115 3116
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3117 3118 3119 3120

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
3121
            import paddle
3122
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3123

C
Charles-hit 已提交
3124
            paddle.enable_static()
3125
            image = paddle.static.data(name='image', shape=[None, 28], dtype='float32')
C
Charles-hit 已提交
3126 3127
            fc = paddle.static.nn.fc(image, size=10)
            cost = paddle.mean(fc)
3128 3129
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3130

Z
Zeng Jinle 已提交
3131 3132 3133 3134
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3135
    """
3136

3137 3138 3139
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3150 3151 3152 3153 3154 3155
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3156
        super().__init__(
3157 3158 3159 3160 3161 3162
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3163
        self.type = "adadelta"
3164 3165
        self._multi_precision = False
        self._master_weights = {}
3166 3167 3168 3169
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3170 3171
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3172 3173

        for p in parameters:
3174
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
3175 3176 3177 3178 3179 3180 3181
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._avg_squared_grad_acc_str, master_p)
                self._add_accumulator(
                    self._avg_squared_update_acc_str, master_p
                )
                continue
            if (
3182
                self._is_dtype_fp16_or_bf16(p.dtype)
3183 3184 3185
                and not self._multi_precision
            ):
                warnings.warn(
3186
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
3187 3188
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
3189 3190 3191 3192
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3193 3194
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3195

3196
        avg_squared_grad_acc = self._get_accumulator_master(
3197 3198
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3199
        avg_squared_update_acc = self._get_accumulator_master(
3200 3201
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3202 3203 3204

        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
3205 3206 3207 3208 3209 3210
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
3211

姜永久 已提交
3212
        if in_dygraph_mode():
3213 3214 3215 3216 3217
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
3218
                master_weight,
3219 3220
                self._rho,
                self._epsilon,
3221
                find_master,
3222
            )
3223 3224
        else:
            # Create the adadelta optimizer op
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3241 3242
            adadelta_op = block.append_op(
                type=self.type,
3243 3244 3245 3246 3247 3248
                inputs=inputs,
                outputs=outputs,
                attrs={
                    "epsilon": self._epsilon,
                    "rho": self._rho,
                    "multi_precision": find_master,
3249 3250 3251
                },
                stop_gradient=True,
            )
3252

3253
            return adadelta_op
3254 3255


Q
qingqing01 已提交
3256
class RMSPropOptimizer(Optimizer):
3257
    r"""
Q
qingqing01 已提交
3258 3259 3260 3261 3262 3263 3264 3265
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3266
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3267 3268 3269 3270

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3271
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3272 3273 3274 3275 3276 3277

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3278
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3279

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3294 3295 3296 3297
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3298
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3299 3300 3301 3302 3303
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3304 3305 3306
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3307
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3308
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3309
        momentum(float): :math:`\\beta` in equation is the momentum term,
3310
            default is 0.0.
3311 3312 3313 3314
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3315
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3316
            This parameter is required in dygraph mode. \
3317
            The default value is None in static graph mode, at this time all parameters will be updated.
3318 3319 3320 3321 3322
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3323 3324 3325
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3326
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3327 3328
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3329 3330 3331 3332 3333 3334 3335

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3336 3337 3338 3339
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3340
            paddle.enable_static()
3341 3342 3343
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3344 3345
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3346
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3347
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3348
                avg_cost = paddle.mean(cost)
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3362 3363 3364 3365
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3366
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3380
        super().__init__(
3381 3382 3383 3384 3385 3386
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3400
        self._centered = centered
3401 3402 3403
        self._multi_precision = False
        self._master_weights = {}

Q
qingqing01 已提交
3404 3405 3406 3407 3408
    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
3409
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
3410 3411 3412 3413 3414 3415
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._momentum_acc_str, master_p)
                self._add_accumulator(self._mean_square_acc_str, master_p)
                self._add_accumulator(self._mean_grad_acc_str, master_p)
                continue
            if (
3416
                self._is_dtype_fp16_or_bf16(p.dtype)
3417 3418 3419
                and not self._multi_precision
            ):
                warnings.warn(
3420
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
3421 3422
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
qingqing01 已提交
3423 3424
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3425
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3426 3427 3428 3429 3430

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3431
        momentum_acc = self._get_accumulator_master(
3432 3433
            self._momentum_acc_str, param_and_grad[0]
        )
3434
        mean_square_acc = self._get_accumulator_master(
3435 3436
            self._mean_square_acc_str, param_and_grad[0]
        )
3437
        mean_grad_acc = self._get_accumulator_master(
3438 3439
            self._mean_grad_acc_str, param_and_grad[0]
        )
3440 3441
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
3442 3443 3444 3445 3446 3447
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
C
caozhou 已提交
3448
        if in_dygraph_mode():
3449 3450 3451 3452 3453 3454 3455
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
3456
                master_weight,
3457 3458 3459 3460
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
3461
                find_master,
3462
            )
C
caozhou 已提交
3463
            return None
3464
        else:
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "MeanGrad": mean_grad_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }

            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3485 3486
            rmsprop_op = block.append_op(
                type=self.type,
3487 3488
                inputs=inputs,
                outputs=outputs,
3489 3490 3491 3492
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3493
                    "centered": self._centered,
3494
                    "multi_precision": find_master,
3495
                },
3496 3497
                stop_gradient=True,
            )
Q
qingqing01 已提交
3498

3499
            return rmsprop_op
Q
qingqing01 已提交
3500 3501


Q
qiaolongfei 已提交
3502
class FtrlOptimizer(Optimizer):
3503
    r"""
Q
qiaolongfei 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3542 3543 3544 3545 3546
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3547
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3548
            This parameter is required in dygraph mode. \
3549
            The default value is None in static graph mode, at this time all parameters will be updated.
3550 3551 3552 3553 3554
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3555 3556 3557
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3558
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3559 3560
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3561 3562 3563 3564 3565 3566 3567

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3568 3569 3570 3571
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3572 3573
            paddle.enable_static()

3574 3575 3576
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3577 3578
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3579
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3580
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3581
                avg_cost = paddle.mean(cost)
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3594

3595
    NOTE:
C
chengduo 已提交
3596
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3597 3598 3599 3600 3601
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3613
        super().__init__(
3614 3615 3616 3617 3618 3619
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3640 3641 3642 3643 3644 3645
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
姜永久 已提交
3646
        if in_dygraph_mode():
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3663 3664

        else:
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3686

3687
            return ftrl_op
Q
qiaolongfei 已提交
3688 3689


Y
Yibing Liu 已提交
3690
class LambOptimizer(AdamOptimizer):
3691
    r"""
Y
Yibing Liu 已提交
3692 3693
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3694 3695 3696
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3697
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3698 3699 3700 3701 3702

    The updating of parameters follows:

    ..  math::

3703
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3704

Y
Yibing Liu 已提交
3705
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3706

3707 3708 3709 3710
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3711
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3712

Y
Yibing Liu 已提交
3713
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3714 3715


3716
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3717 3718 3719
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3720 3721 3722 3723 3724 3725 3726 3727
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3728
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3729
            This parameter is required in dygraph mode. \
3730
            The default value is None in static graph mode, at this time all parameters will be updated.
3731 3732 3733 3734 3735
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3736 3737
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3738 3739 3740
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3741 3742
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3743
            Default None.
3744
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3745
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3746 3747 3748

    Examples:
        .. code-block:: python
3749

2
201716010711 已提交
3750
            import paddle
3751
            import paddle.fluid as fluid
2
201716010711 已提交
3752
            paddle.enable_static()
Y
Yibing Liu 已提交
3753

3754
            data = paddle.static.data(name='x', shape=[-1, 5], dtype='float32')
C
Charles-hit 已提交
3755
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3756
            cost = paddle.mean(hidden)
Y
Yibing Liu 已提交
3757

Y
Yibing Liu 已提交
3758 3759 3760 3761 3762
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3763 3764 3765 3766 3767 3768 3769
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
3783 3784 3785 3786 3787
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3788
        super().__init__(
3789 3790 3791 3792 3793 3794 3795 3796 3797
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
3798 3799
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3800
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3801 3802 3803

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3804
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3805

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
3823 3824 3825
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3826
        lr = self._create_param_lr(param_and_grad)
3827
        master_weight = None
姜永久 已提交
3828
        if in_dygraph_mode():
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
3853
            return None
Y
Yibing Liu 已提交
3854

Y
Yibing Liu 已提交
3855
        # create the lamb optimize op
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
3882 3883 3884 3885

        return lamb_op


3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3899
Dpsgd = DpsgdOptimizer
3900
DecayedAdagrad = DecayedAdagradOptimizer
3901
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3902
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3903
Ftrl = FtrlOptimizer
3904
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3905
Lamb = LambOptimizer
3906 3907 3908


class ModelAverage(Optimizer):
3909
    r"""
3910
	:api_attr: Static Graph
S
swtkiwi 已提交
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3930

3931 3932 3933 3934 3935 3936 3937 3938 3939
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3940 3941

    Args:
3942 3943 3944
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3945 3946 3947 3948 3949
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3950 3951 3952
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3953

3954
    Examples:
Q
qiaolongfei 已提交
3955 3956 3957

      .. code-block:: python

2
201716010711 已提交
3958
        import paddle
3959 3960
        import paddle.fluid as fluid
        import numpy
2
201716010711 已提交
3961
        paddle.enable_static()
3962 3963 3964 3965

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3966

3967 3968 3969 3970
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3971
            data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
3972
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3973
            loss = paddle.mean(hidden)
3974 3975 3976 3977 3978 3979
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3980
                                                         max_average_window=12500)
3981 3982

            exe.run(startup_program)
3983 3984 3985 3986 3987
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3988 3989

            # apply ModelAverage
3990
            with model_average.apply(exe):
3991 3992 3993 3994
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3995 3996
    """

3997 3998 3999 4000 4001 4002 4003 4004
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
姜永久 已提交
4005
        if in_dygraph_mode():
Z
zhongpu 已提交
4006
            raise Exception("In dygraph, don't support ModelAverage.")
4007
        super().__init__(0.0, regularization=regularization, name=name)
4008 4009 4010
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
4011

4012
        self.params_grads = []
4013 4014 4015
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
4016
            if param.do_model_average != False:
4017
                grad = param.block.create_var(
4018 4019 4020
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
4021 4022
                    dtype=param.dtype,
                    persistable=False,
4023 4024
                    stop_gradient=True,
                )
4025
                self.params_grads.append((param, grad))
4026

4027
        for param, grad in self.params_grads:
4028 4029
            if grad is None:
                continue
X
Xin Pan 已提交
4030
            with param.block.program._optimized_guard(
4031 4032
                [param, grad]
            ), name_scope('move_average'):
4033
                self._append_average_accumulate_op(param)
4034

4035 4036 4037 4038
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
4039
                self._add_average_apply_op(block, param_grad)
4040 4041 4042 4043 4044

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
4045
                self._add_average_restore_op(block, param_grad)
4046

4047
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
4048 4049 4050 4051 4052 4053
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
4054 4055
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
4056
        old_num_accumulates = block._clone_variable(
4057 4058
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
4059
        num_updates = block._clone_variable(
4060 4061
            self._get_accumulator('num_updates', param)
        )
4062
        # backup param value to grad
4063
        paddle.assign(param, output=grad)
4064
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
4065 4066
        tmp = paddle.add_n([num_accumulates, old_num_accumulates])
        sum = paddle.add_n([sum_1, sum_2, sum_3])
4067
        tmp = paddle.cast(
4068
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
4069
        )
4070
        sum = paddle.cast(
4071
            x=sum, dtype='float32' if self._dtype is None else self._dtype
4072
        )
4073
        paddle.assign(paddle.divide(sum, tmp), output=param)
4074 4075

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4076 4077
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4078
        paddle.assign(grad, output=param)
4079 4080 4081 4082 4083 4084

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4121

S
rename  
sneaxiy 已提交
4122
    @signature_safe_contextmanager
4123
    def apply(self, executor, need_restore=True):
4124 4125
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4126 4127

        Args:
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4139 4140
            import paddle
            paddle.enable_static()
4141 4142 4143 4144 4145 4146 4147 4148 4149

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
4150
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4151
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4152
                loss = paddle.mean(hidden)
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4174
        """
4175 4176 4177 4178 4179 4180
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4181 4182

    def restore(self, executor):
4183 4184
        """
        Restore ``Parameter`` values of current model.
4185

4186
        Args:
4187 4188 4189 4190 4191 4192 4193 4194
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4195 4196
            import paddle
            paddle.enable_static()
4197 4198 4199 4200 4201 4202 4203 4204 4205

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
4206
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4207
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4208
                loss = paddle.mean(hidden)
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4233
        """
4234
        executor.run(self.restore_program)
4235 4236


4237
class ExponentialMovingAverage:
4238
    r"""
S
swtkiwi 已提交
4239

4240 4241 4242 4243 4244 4245
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4246
        \text{EMA}_0 & = 0
4247

4248
        \text{EMA}_t & = \text{decay} * \text{EMA}_{t-1} + (1 - \text{decay}) * \theta_t
4249

4250 4251 4252
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4253
    the **restore()** method is used to restore the parameters.
4254

4255 4256
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
4257
    :math:`(1 - \text{decay}^t)` , i.e., the actual EMAs applied to parameters
4258
    when calling **apply()** method would be
4259 4260

    ..  math::
4261

4262
        \widehat{\text{EMA}}_t = \frac{\text{EMA}_t}{1 - \text{decay}^t}
4263

4264 4265
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4266
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4267
    allows users to pass a Variable to schedule the decay rate, in this case,
4268
    the actual decay rate becomes
4269

4270
    ..  math::
4271

4272
        \min(\text{decay}, \frac{1 + \text{thres_steps}}{10 + \text{thres_steps}})
4273 4274

    Usually **thres_steps** can be the global training steps.
4275 4276 4277


    Args:
4278 4279 4280
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4281 4282 4283 4284


    Examples:

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4313
                    feed={'x': data},
4314 4315 4316 4317 4318 4319
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4320
                        feed={'x': data},
4321 4322 4323 4324 4325 4326
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4327
                        feed={'x': data},
4328 4329 4330
                        fetch_list=[hidden.name])
                ema.restore(exe)

4331 4332
    """

4333
    def __init__(self, decay=0.999, thres_steps=None, name=None):
姜永久 已提交
4334
        if in_dygraph_mode():
Z
zhongpu 已提交
4335
            raise Exception(
4336 4337
                "In dygraph, don't support ExponentialMovingAverage."
            )
4338
        self._decay = decay
4339
        self._thres_steps = thres_steps
4340
        self._name = name if name is not None else ''
4341 4342
        self._decay_var = self._get_ema_decay()

4343
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4344
        self._params_tmps = []
4345
        for param in default_main_program().global_block().all_parameters():
4346
            if param.do_model_average != False:
4347 4348 4349 4350 4351 4352 4353 4354
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4355
                self._params_tmps.append((param, tmp))
4356

Y
Yibing Liu 已提交
4357 4358
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4359 4360 4361
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4362
                self._ema_vars[param.name] = self._create_ema_vars(param)
4363 4364 4365 4366

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4367
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4368
            for param, tmp in self._params_tmps:
4369 4370
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4371
                ema = block._clone_variable(self._ema_vars[param.name])
4372
                paddle.assign(param, output=tmp)
4373
                # bias correction
4374 4375
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4376
                        paddle.assign(ema / (1.0 - decay_pow), output=param)
4377
                    with switch.default():
4378
                        paddle.assign(ema, output=param)
4379 4380 4381 4382

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4383
            for param, tmp in self._params_tmps:
4384 4385
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
4386
                paddle.assign(tmp, output=param)
4387

4388 4389
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
4390
            decay_var = paddle.static.create_global_var(
4391 4392 4393 4394
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4395 4396
                name="scheduled_ema_decay_rate",
            )
4397 4398 4399 4400 4401

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
4402
                        paddle.assign(decay_t, decay_var)
4403
                    with switch.default():
4404
                        paddle.assign(
4405 4406
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4407 4408 4409
        return decay_var

    def _get_decay_pow(self, block):
4410
        global_step = paddle.static.create_global_var(
4411 4412 4413 4414 4415 4416
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4417
        global_step = paddle.cast(global_step, "float32")
4418
        decay_var = block._clone_variable(self._decay_var)
4419
        decay_pow_acc = paddle.pow(decay_var, global_step)
4420
        return decay_pow_acc, global_step
4421

Y
Yibing Liu 已提交
4422
    def _create_ema_vars(self, param):
4423
        param_ema = paddle.static.create_global_var(
4424 4425 4426 4427
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4428 4429
            persistable=True,
        )
4430 4431 4432

        return param_ema

Y
Yibing Liu 已提交
4433
    def update(self):
4434 4435
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4436 4437
        train program.
        """
4438
        global_step = layers.autoincreased_step_counter(
4439 4440
            counter_name=self._step_counter_name
        )
4441
        param_master_emas = []
Y
Yibing Liu 已提交
4442
        for param, tmp in self._params_tmps:
4443 4444 4445
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4446
                param_ema = self._ema_vars[param.name]
4447
                if param.name + '.master' in self._ema_vars:
4448 4449 4450 4451
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4452 4453
                        1 - self._decay_var
                    )
4454
                    paddle.assign(ema_t, output=param_ema)
4455 4456 4457 4458 4459 4460 4461 4462 4463

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4464 4465 4466
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4467

4468 4469 4470 4471
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4472

4473 4474
        Args:
            executor (Executor): The Executor to execute applying.
4475
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4476
                applying. Default True.
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4487

4488 4489 4490 4491
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4492 4493


4494
class PipelineOptimizer:
4495
    """
4496
        :api_attr: Static Graph
S
swtkiwi 已提交
4497

4498 4499 4500 4501
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4502

4503
    Args:
4504 4505 4506
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4507

4508 4509
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4510

C
Charles-hit 已提交
4511
            import paddle
4512
            import paddle.fluid as fluid
H
hutuxian 已提交
4513
            import paddle.fluid.layers as layers
G
GGBond8488 已提交
4514
            import numpy as np
H
hutuxian 已提交
4515

C
Charles-hit 已提交
4516
            paddle.enable_static()
4517
            with fluid.device_guard("gpu:0"):
G
GGBond8488 已提交
4518 4519
                x = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=0)
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=0)
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
C
Charles-hit 已提交
4531 4532
                fc = paddle.static.nn.fc(x=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = paddle.mean(fc)
H
hutuxian 已提交
4533
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4534
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4535
            optimizer.minimize(loss)
4536 4537 4538 4539 4540 4541 4542 4543 4544

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4545 4546
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4547 4548
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4549
            exe.train_from_dataset(
4550
                    fluid.default_main_program())
4551
            data_loader.reset()
4552 4553
    """

4554
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4555 4556 4557 4558 4559
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
姜永久 已提交
4560
        if in_dygraph_mode():
Z
zhongpu 已提交
4561
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4562 4563 4564
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
4565
            paddle.static.amp.decorator.OptimizerWithMixedPrecision,
4566
        )
4567
        if not isinstance(optimizer, valid_optimizers):
4568 4569 4570 4571 4572 4573 4574
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4575
        self._optimizer = optimizer
4576 4577 4578 4579 4580 4581

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4582 4583 4584
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4585
        self._num_microbatches = num_microbatches
4586 4587 4588
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4589
        self._start_cpu_core_id = start_cpu_core_id
4590 4591 4592 4593 4594 4595
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4596
        self._param_device_map = None
4597 4598
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4599 4600
        self.output_var_to_op = None
        self.input_var_to_op = None
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4630 4631 4632 4633
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4634 4635
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4636 4637 4638
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4639
                'ring_id': self.global_ring_id,
4640
                self._op_role_key: self._op_role.Optimize,
4641 4642 4643
                'use_calc_stream': True,
            },
        )
4644 4645
        offset += 1
        if op.type == "reduce_any":
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4657
            offset += 1
4658
        return offset
H
hutuxian 已提交
4659

4660
    def _create_vars(self, block, ori_block):
4661
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4662
        used_var_set = set()
4663 4664 4665 4666 4667 4668 4669 4670 4671
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4672
            # For op process vars on all devices, remove its input
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4698 4699 4700 4701 4702 4703 4704 4705
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4706
            for var in vars:
4707 4708
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4709
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4710 4711
                    continue
                used_var_set.add(var)
4712 4713
                if block._find_var_recursive(str(var)):
                    continue
4714
                source_var = ori_block._var_recursive(str(var))
4715
                if source_var.type == core.VarDesc.VarType.READER:
4716
                    dest_var = block.create_var(
4717 4718
                        name=var,
                        type=core.VarDesc.VarType.READER,
4719 4720
                        persistable=source_var.persistable,
                    )
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4732 4733
                        error_clip=source_var.error_clip,
                    )
4734
                else:
4735
                    dest_var = block._clone_variable(source_var, False)
4736
                self._clone_var_attr(dest_var, source_var)
4737 4738 4739
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4740 4741
            if self.use_sharding or not should_insert:
                continue
4742 4743 4744 4745
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4746

4747
    def _is_loss_grad_op(self, op):
4748 4749
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4750
        return op_role & int(self._op_role.Backward) and op_role & int(
4751 4752
            self._op_role.Loss
        )
4753

4754
    def _is_forward_op(self, op):
4755 4756 4757
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4758

4759
    def _is_backward_op(self, op):
4760
        return self._op_role_key in op.attr_names and (
4761 4762
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4763 4764 4765 4766

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4767 4768

    def _is_optimize_op(self, op):
4769
        return self._op_role_key in op.attr_names and (
4770 4771
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
4772 4773

    def _is_update_op(self, op):
4774 4775 4776 4777 4778
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
4779

4780
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4781
        """
4782
        Split a program into sections according to devices that ops run on.
4783
        The op whose op_device attr is "gpu:all" is copied to all sections.
4784 4785 4786

        Args:
            main_program (Program): the main program
4787
            devices: all used devices
H
hutuxian 已提交
4788
        """
4789
        # Map from device to its corresponding section program info
4790
        device_program_map = defaultdict(Program)
4791

4792
        block = main_program.block(0)
4793 4794
        for op in block.ops:
            device = op.attr(self._op_device_key)
4795
            # Copy ops whose op_device set to "gpu:all" to all sections.
4796
            if device == f"{self._device}:all":
4797
                for device in devices:
4798 4799
                    program = device_program_map[device]
                    op_desc = op.desc
4800
                    ap_op = program.global_block().desc.append_op()
4801
                    ap_op.copy_from(op_desc)
4802
                    ap_op._set_attr(self._op_device_key, "")
4803 4804 4805
            else:
                program = device_program_map[device]
                op_desc = op.desc
4806
                ap_op = program.global_block().desc.append_op()
4807
                ap_op.copy_from(op_desc)
4808
                ap_op._set_attr(self._op_device_key, "")
4809

4810
        program_list = []
4811
        for key in devices:
4812
            program = device_program_map[key]
4813 4814
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4815

4816
        return program_list
H
hutuxian 已提交
4817

4818 4819 4820 4821 4822 4823 4824
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4825 4826
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
4827
            'or beta2_pow_acc.'
4828 4829
        )
        param_name = var_name[0 : var_name.index('_beta')]
4830 4831 4832
        device = self._param_device_map[param_name]
        return device

4833 4834
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4835 4836 4837
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4838 4839
            if device == "cpu":
                assert op.type == "fill_constant", (
4840
                    "For ops in startup program with the op_device attribute "
4841 4842
                    "of cpu, they must be of type fill_constant."
                )
4843 4844 4845
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4846
            if device:
4847
                device_index = int(device.split(':')[1])
4848
            else:
4849 4850
                # LR related ops
                device = None
4851 4852
            if device and device_index != device_id:
                continue
4853
            op_desc = op.desc
4854
            ap_op = new_startup_program.global_block().desc.append_op()
4855 4856 4857
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4858
        self._create_vars(new_startup_program.global_block(), block)
4859 4860
        return new_startup_program

4861
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4862
        """
4863
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4864
        """
4865 4866 4867 4868 4869 4870
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4871
        post_ops = self.input_var_to_op[var_name]
4872
        if post_ops is None:
4873
            return None
4874 4875 4876 4877 4878 4879
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4880

4881
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4882
        """
4883 4884
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4885
        """
4886
        prev_ops = self.output_var_to_op[var_name]
4887
        if prev_ops is None:
4888
            return None
4889 4890 4891 4892
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4893
                break
4894
        return result_op
4895 4896

    def _rename_arg(self, op, old_name, new_name):
4897 4898
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4899

4900
    def _create_var(self, block, ref_var, name, dtype=None):
4901 4902 4903 4904 4905 4906 4907 4908
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4909
            dtype=ref_var.dtype if dtype is None else dtype,
4910 4911
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4912 4913
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4914 4915
            need_check_feed=ref_var.desc.need_check_feed(),
        )
4916
        self._clone_var_attr(new_var, ref_var)
4917 4918
        return new_var

4919 4920 4921 4922 4923
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4924 4925 4926 4927 4928 4929
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4930

4931 4932 4933 4934 4935 4936
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4937
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4938
        """
4939
        Get the op_device attribute of a op.
H
hutuxian 已提交
4940
        """
4941 4942 4943 4944 4945
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
4946
        if device:
4947 4948
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
4949
                "supported in pipeline parallemism."
4950
            )
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4964
            op._set_attr(self._op_device_key, f"{self._device}:all")
4965 4966 4967 4968
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
4969 4970 4971
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
4972 4973 4974 4975
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
4976 4977 4978 4979
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
4980 4981 4982
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4983 4984 4985
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
4986
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4987 4988
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4989
            # for checkpoint offloading
4990 4991 4992
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
4993 4994 4995
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4996
                post_op = self._find_post_op(idx, output_name)
4997 4998 4999
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
5000
            else:
5001
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5002 5003 5004
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
5005 5006 5007
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
5008 5009 5010
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
5011 5012 5013 5014 5015 5016 5017 5018 5019
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
5020
            param_name = self._strip_grad_suffix(grad_name[0])
5021 5022 5023 5024 5025
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
5026 5027
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
5028
                "and regularization ops must have op_role_var attribute."
5029
            )
5030
            op_role_var = op.attr(self._op_role_var_key)
5031 5032
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
5033
                "regularization ops must have two elements."
5034
            )
5035 5036
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
5037
            # For sum op added by global gradient clip, it must be
5038
            # put on all devices
5039 5040 5041 5042 5043 5044 5045
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
5046
                device = f"{self._device}:all"
5047
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
5048
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
5049
            op._set_attr(self._op_device_key, f"{self._device}:all")
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
5060 5061
        else:
            other_known_ops = [
5062 5063 5064 5065 5066 5067
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5068
            ]
5069 5070 5071
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5072
                "is {}".format(other_known_ops, op.type)
5073
            )
5074
            assert self._is_optimize_op(op)
5075
            op._set_attr(self._op_device_key, f"{self._device}:all")
5076 5077

    def _add_op_device_attr(self, block):
5078
        """
5079
        Add op_device attrribute for ops in block that have
5080
        not that attribute set.
5081
        """
5082
        for idx, op in enumerate(list(block.ops)):
5083 5084 5085 5086 5087
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5088
                # Copy read related ops to all section to make them exit
5089 5090 5091 5092
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5093
                op._set_attr(self._op_device_key, f"{self._device}:all")
5094 5095
                continue
            # op_device attribute has been set
5096 5097
            if self._get_op_device_attr(op):
                continue
5098
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5099

5100 5101
    def _check_validation(self, block):
        """
5102
        Check whether ops in a block have both the op_device and the
5103 5104
        op_role attributes set.
        Then, return all devices in order.
5105
        """
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5116
        for op in block.ops:
5117
            if not op._has_kernel(op.type):
5118 5119 5120 5121 5122 5123
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5124
            assert op.has_attr(
5125 5126
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5127
            op_role = op.attr(self._op_role_key)
5128 5129 5130 5131 5132
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5133

5134
            assert op.has_attr(
5135 5136 5137 5138
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5139 5140

            device = op.attr(self._op_device_key)
5141 5142 5143 5144 5145 5146 5147
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5148

5149
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5150 5151
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5152 5153
                "for pipeline parallelism."
            )
5154 5155

            if device not in device_list:
5156
                device_list.append(device)
5157

5158
        return device_list
5159

5160
    def _insert_sendrecv_ops_for_boundaries(self, block):
5161
        """
5162
        Insert a pair of send and recv ops for every two
5163 5164
        consecutive ops on different devices.
        """
5165
        # A map from var to device where op takes it as input,
5166
        # avoiding multiple send and recv ops.
5167
        input_var_to_device = dict()
5168 5169 5170 5171 5172 5173 5174 5175
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5176
            'first_optimize_index': first_optimize_index,
5177
        }
5178

5179
        for index, op in enumerate(list(block.ops)):
5180
            cur_device = op.attr(self._op_device_key)
5181 5182
            if cur_device == f"{self._device}:all":
                continue
5183 5184
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5185
                # skip data var
5186 5187
                if var.is_data:
                    continue
5188
                prev_device = None
5189 5190 5191

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5192 5193
                    if var_name not in self._param_device_map:
                        continue
5194
                    prev_device = self._param_device_map[var_name]
5195

5196
                if not prev_device:
5197 5198 5199
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5200

5201 5202
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5203

5204 5205
                if prev_device == cur_device:
                    continue
5206

5207 5208 5209 5210 5211 5212 5213
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5214 5215 5216 5217
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5218 5219
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5220
                        'please check the op_role of op={}'.format(op)
5221
                    )
5222 5223

                    if is_forward:
5224 5225
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5226
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5227 5228 5229
                                prev_id, cur_id, op
                            )
                        )
5230
                    elif is_backward:
5231 5232
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5233
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5234 5235 5236
                                prev_id, cur_id, op
                            )
                        )
5237

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5248 5249
                            (cur_dev, prev_dev)
                        )
5250 5251 5252 5253 5254
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5255 5256
                            (cur_dev, prev_dev)
                        )
5257 5258 5259 5260 5261 5262
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5263
                    var = block.vars[var_name]
5264 5265 5266
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5267 5268 5269 5270 5271 5272 5273
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5274

5275
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5276
                        block._insert_op_without_sync(
5277
                            index=index + extra_index_info['index'],
5278 5279 5280
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5281
                                self._op_device_key: prev_dev,
5282 5283 5284
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5285 5286 5287
                                'ring_id': ring_id,
                            },
                        )
5288
                        extra_index_info['index'] += 1
5289
                        var_shape = list(var.shape)
5290 5291 5292 5293 5294
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5295
                        block._insert_op_without_sync(
5296
                            index=index + extra_index_info['index'],
5297 5298 5299
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5300
                                'out_shape': var_shape,
5301
                                'dtype': var.dtype,
5302
                                self._op_device_key: cur_dev,
5303 5304 5305
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5306 5307 5308
                                'ring_id': ring_id,
                            },
                        )
5309
                        extra_index_info['index'] += 1
5310
                    elif self.schedule_mode == '1F1B':  # 1F1B
5311
                        var_shape = list(var.shape)
5312 5313 5314 5315 5316
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5317

5318
                        numel = np.prod(var_shape)
5319 5320 5321
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5344 5345
                                },
                            )
5346 5347 5348
                            extra_index_info['index'] += 1
                            return

5349 5350
                        _check_stage(cur_id, prev_id)

5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5361
                        extra_index_info['index'] += 1
5362 5363
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5364 5365 5366
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5367
                        block._insert_op_without_sync(
5368
                            index=index + extra_index_info['index'],
5369
                            type='send_v2'
5370 5371
                            if not use_mp or is_param
                            else 'partial_send',
5372 5373
                            inputs={'X': var},
                            attrs={
5374
                                self._op_device_key: prev_dev,
5375 5376 5377 5378
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5379 5380 5381
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5382 5383
                            },
                        )
5384
                        extra_index_info['index'] += 1
5385 5386 5387
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5388 5389
                                'first_optimize_index'
                            ]
5390 5391 5392 5393
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5394
                        sync_comm_op = block._insert_op_without_sync(
5395
                            index=insert_index + extra_index_info['index'],
5396 5397 5398 5399
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5400
                                self._op_device_key: prev_dev,
5401
                                self._op_role_key: new_op_role,
5402
                                'ring_id': ring_id,
5403 5404
                            },
                        )
5405
                        if int(op_role) == int(self._op_role.Forward):
5406
                            sync_comm_op._set_attr('pipeline_flag', '')
5407
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5408
                        block._insert_op_without_sync(
5409
                            index=index + extra_index_info['index'],
5410
                            type='recv_v2'
5411 5412
                            if not use_mp or is_param
                            else 'partial_recv',
5413 5414 5415 5416
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5417
                                self._op_device_key: cur_dev,
5418 5419 5420
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5421 5422 5423 5424
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5425 5426
                            },
                        )
5427
                        extra_index_info['index'] += 1
5428
                        if use_mp and not is_param:
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5442 5443
                                },
                            )
5444
                            extra_index_info['index'] += 1
5445 5446 5447
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5448 5449
                            "The given value is {}.".format(self.schedule_mode)
                        )
5450

5451 5452 5453 5454
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5455 5456
        block._sync_with_cpp()

5457
    def _insert_loss_scale(self, block):
5458
        """
5459
        Scale the loss corresponding to number of micro-batches.
5460
        """
5461 5462
        if self._num_microbatches == 1:
            return
5463
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5464
            if self._is_loss_grad_op(op):
5465 5466
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5467
                    "but this op is {}".format(op.type)
5468
                )
5469 5470 5471 5472
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5473 5474
                break

5475 5476
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5477 5478
            if not self._is_optimize_op(op):
                continue
5479 5480 5481
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5482 5483
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5484 5485 5486
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5487 5488
                if not core.grad_var_suffix() in name:
                    continue
5489 5490 5491 5492
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5493 5494 5495
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5496 5497 5498 5499
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5500 5501
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5502
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5503 5504
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5505 5506
            return fused_gradient_names

5507 5508 5509
        merged_gradient_names = []
        first_opt_op_idx = None

5510 5511 5512
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5513 5514 5515 5516 5517 5518 5519 5520
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5521
                    continue
5522

5523
            if self._is_backward_op(op) and first_opt_op_idx is None:
5524
                first_opt_op_idx = index + 1
5525 5526
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5527

5528 5529 5530
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5531
                op_role_var = op.attr(self._op_role_var_key)
5532 5533
                if len(op_role_var) == 0:
                    continue
5534 5535
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5536 5537
                    offset = 0
                    param_name = op_role_var[i]
5538 5539 5540 5541
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5542

5543
                    param_grad_name = param_name + core.grad_var_suffix()
5544
                    merged_param_grad_name = param_grad_name + merged_suffix
5545
                    if not block.has_var(merged_param_grad_name):
5546 5547 5548 5549 5550 5551
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5552
                    assert block.has_var(merged_param_grad_name)
5553

5554 5555 5556
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5557
                    block._insert_op(
5558 5559 5560 5561
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5562
                        attrs={
5563 5564 5565
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5566
                            # a trick to run this op once per mini-batch
5567 5568 5569
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5570
                    offset += 1
5571 5572
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5573 5574

                    is_fp16_grad = 'cast_fp16' in grad_name
5575
                    need_cast = is_fp16_grad is not fp16_allreduce
5576 5577 5578 5579 5580 5581

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5582
                        cast_grad_var_name = param_grad_name + '@TMP'
5583
                        cast_grad_var = self._create_var(
5584 5585
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5586
                        cast_grad_var.persistable = False
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5598
                        offset += 1
5599 5600 5601 5602 5603 5604 5605
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5606 5607
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5608 5609
                        },
                    )
5610 5611 5612
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5613 5614
        if not fp16_allreduce:
            return merged_gradient_names
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5649

5650
        return merged_gradient_names
5651

5652 5653 5654
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5655
        grad_param_pairs = self._sort_grad_param_by_dtype(
5656 5657
            main_block, grad_param_pairs
        )
5658

5659 5660 5661
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5662
        cur_size = 0.0
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5673 5674
                stop_gradient=False,
            )
5675
            real_param = main_block.var(param)
5676 5677
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5678 5679 5680 5681
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5682 5683 5684 5685 5686
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5687
                grad_param_segments.append(
5688 5689
                    ([real_grad], [real_param], [merged_grad_var])
                )
5690
                last_dtype = real_grad.dtype
5691
                cur_size = 0.0
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5704 5705 5706 5707 5708 5709
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5710
            # keep the '.cast_fp16' info in the fuse var name
5711 5712 5713 5714 5715 5716 5717 5718 5719
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5720 5721 5722 5723
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5724 5725
                stop_gradient=False,
            )
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5751
                outputs={"Output": grads, "FusedOutput": fused_grad},
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5768 5769 5770 5771 5772 5773 5774
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5775 5776
                },
            )
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
5787
                    "FusedOutput": fused_merged_grad,
5788 5789 5790 5791 5792 5793 5794 5795
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
5796 5797 5798
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
5799 5800 5801 5802 5803 5804 5805 5806 5807
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
5808
            need_cast = is_fp16_grad is not fp16
5809 5810 5811 5812
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
5830 5831 5832 5833 5834 5835 5836
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
5837 5838
                attrs={self._op_role_key: self._op_role.Backward},
            )
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
5867 5868 5869 5870 5871 5872
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5873
        return fused_merged_gradients, first_opt_op_idx
5874

5875 5876 5877
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5897 5898 5899
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
5911 5912
                        (op_role_var[i + 1], op_role_var[i])
                    )
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
5926 5927 5928 5929 5930 5931
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
5932 5933 5934 5935
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5936

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5955 5956 5957
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
5958
            core.VarDesc.VarType.BF16: 2,
5959 5960 5961 5962 5963 5964 5965 5966 5967
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
5968 5969 5970 5971 5972 5973
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
5974

5975 5976
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5977
        for prog in program_list:
5978 5979 5980 5981 5982 5983
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5984 5985
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5986 5987 5988
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5989
                self._create_vars(new_sub_block, origin_sub_block)
5990
                op._set_attr('sub_block', new_sub_block)
5991 5992 5993

    def _get_device_info(self, block):
        for op in block.ops:
5994 5995
            if not op._has_kernel(op.type):
                continue
5996 5997 5998
            op_device = op.attr(self._op_device_key)
            return op_device

5999 6000 6001
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
6002 6003 6004 6005 6006 6007 6008
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
6009
        for prog in program_list:
6010 6011
            block = prog.block(0)
            for var_name in block.vars:
6012 6013
                if var_name == "double_buffer_0":
                    continue
6014
                var = block.var(var_name)
6015 6016
                if not var.persistable:
                    continue
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
6032 6033 6034 6035 6036 6037
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
6038
                        continue
6039 6040
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
6041 6042
                        self._op_role.Optimize.LRSched
                    ):
6043 6044 6045 6046
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
6047 6048
                            "op {}.".format(var_name, op)
                        )
6049 6050 6051 6052 6053
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
6054 6055
            if not var_name in write_info:
                continue
6056 6057 6058 6059 6060

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
6061
            write_dev_index = int(write_device.split(':')[1])
6062 6063
            all_progs = var_info[var_name]
            for prog in all_progs:
6064 6065
                if prog == write_prog:
                    continue
6066 6067 6068
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6069 6070 6071 6072 6073 6074 6075 6076 6077
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6078 6079 6080

                write_block._insert_op(
                    index=0,
6081
                    type='send_v2',
6082 6083 6084
                    inputs={
                        'X': write_block.var(var_name),
                    },
6085
                    attrs={
6086 6087
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6088 6089
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6090 6091 6092 6093 6094
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6095 6096
                read_block._insert_op(
                    index=0,
6097
                    type='recv_v2',
6098 6099
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6100 6101 6102 6103
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6104 6105
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6106 6107 6108 6109 6110
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6111 6112 6113 6114 6115 6116
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6117
                        self._op_device_key: read_device,
6118 6119
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6120 6121 6122 6123
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6124 6125

    def _is_gradient_clip_op(self, op):
6126 6127 6128
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6129 6130

    def _is_regularization_op(self, op):
6131 6132 6133
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6134

6135 6136
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6137 6138 6139
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6140

6141 6142 6143 6144 6145
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6146
        output_var_to_op = defaultdict(list)
6147
        # A map from var to op which takes it as input.
6148
        input_var_to_op = defaultdict(list)
6149

6150
        for index, op in enumerate(block.ops):
6151
            for var_name in op.input_arg_names:
6152
                input_var_to_op[var_name].append([op, index])
6153
            for var_name in op.output_arg_names:
6154 6155 6156 6157 6158 6159 6160 6161
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6162 6163
        if self.schedule_mode != '1F1B':
            return
6164 6165 6166

        block = program.block(0)

6167
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6168 6169
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6170
            if op.type == recv_type and self._is_backward_op(op):
6171 6172 6173
                backward_recv_index = index
                break

6174
        # last pipeline stage
6175 6176
        if backward_recv_index is None:
            return
6177 6178 6179

        offset = 0
        for index, op in enumerate(list(block.ops)):
6180 6181
            if index >= backward_recv_index:
                break
6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6198 6199
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6200
        block._sync_with_cpp()
6201

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6215 6216 6217 6218
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6219
                backward_insert_index = i
6220 6221 6222 6223 6224 6225
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6245 6246 6247 6248 6249 6250 6251
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6252 6253 6254 6255 6256 6257 6258
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6286 6287
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6288

6289 6290 6291
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6292
        main_block = loss.block
6293
        self.origin_main_block = main_block
6294
        main_program = main_block.program
6295 6296
        if startup_program is None:
            startup_program = default_startup_program()
6297

6298 6299
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6300 6301 6302 6303 6304 6305 6306
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6307 6308
            'mp_degree',
            'mp_rank',
6309 6310
        ]
        for key in required_keys:
6311 6312 6313
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6314 6315 6316 6317 6318 6319 6320 6321
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6322
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6323 6324
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6325 6326

        optimize_ops, params_grads = self._optimizer.minimize(
6327 6328
            loss, startup_program, parameter_list, no_grad_set
        )
6329
        self._param_device_map = self._origin_optimizer._param_device_map
6330

6331 6332 6333 6334
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6335 6336 6337
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6349 6350 6351
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6352 6353
            "another in the order of their ids."
        )
6354
        # Step2: add send and recv ops between section boundaries
6355
        self._insert_sendrecv_ops_for_boundaries(main_block)
6356

6357
        # Step3: split program into sections and add pairs of
6358 6359
        # send and recv ops for data var.
        main_program = main_block.program
6360
        program_list = self._split_program(main_program, device_list)
6361
        for p in program_list:
6362
            self._create_vars(p.global_block(), main_block)
6363

L
lilong12 已提交
6364 6365 6366 6367 6368
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6369 6370
                "stages."
            )
L
lilong12 已提交
6371 6372
        else:
            self.local_rank %= len(device_list)
6373 6374 6375
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6376
        # Step4: Special Case: process persistable vars that exist in
6377
        # multiple sections
6378
        # FIXME
6379 6380
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6381

6382
        # Step5: Add sub blocks for section programs
6383 6384
        self._add_sub_blocks(main_block, program_list)

6385
        place_list = []
6386 6387
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6388 6389 6390 6391
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6392

6393
        # Step6: Split startup program
6394
        new_startup_program = self._split_startup_program(
6395 6396
            startup_program, self.local_rank
        )
6397 6398 6399 6400

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6401
        real_block = program_list[self.local_rank].global_block()
6402 6403
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6404
        if not self.use_sharding:
6405
            # Step7: clear gradients before each mini-batch and
6406 6407 6408 6409 6410
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6411

6412 6413 6414 6415
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6416 6417 6418
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6419 6420 6421 6422 6423

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6424
        main_program._pipeline_opt = {
H
hutuxian 已提交
6425 6426
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6427
            "pipeline_stage": self.local_rank,
6428
            "num_pipeline_stages": len(device_list),
6429
            "schedule_mode": self.schedule_mode,
6430
            "inner_parallelism": len(device_list),
6431 6432
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6433
            "place_id": place_id,
6434
            "sync_steps": -1,
L
lilong12 已提交
6435
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6436 6437
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6438 6439 6440 6441 6442 6443 6444
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6445 6446


M
mapingshuo 已提交
6447 6448
class RecomputeOptimizer(Optimizer):
    """
6449
        :api_attr: Static Graph
S
swtkiwi 已提交
6450

M
mapingshuo 已提交
6451 6452 6453
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6454
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6455 6456 6457
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6458
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6459 6460 6461
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6462
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6463 6464
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6465

M
mapingshuo 已提交
6466 6467 6468 6469 6470 6471 6472 6473 6474
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

6475
            import paddle
M
mapingshuo 已提交
6476 6477
            import paddle.fluid as fluid
            import numpy as np
6478 6479 6480

            paddle.enable_static()

M
mapingshuo 已提交
6481 6482 6483 6484 6485
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
C
Charles-hit 已提交
6486 6487
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6488 6489 6490 6491 6492
                cost = paddle.nn.functional.cross_entropy(
                    input=prediction, label=input_y,
                    reduction='none', use_softmax=False
                )
                sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6493
                return sum_cost, fc_1, prediction
G
GGBond8488 已提交
6494 6495
            input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
            input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
姜永久 已提交
6518
        if in_dygraph_mode():
Z
zhongpu 已提交
6519
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6520 6521
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6522 6523
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6524
        self.enable_offload = False
M
mapingshuo 已提交
6525 6526

    def _set_checkpoints(self, checkpoints):
6527 6528
        """
        Args:
6529
            checkpoints (list): List of Variable or string
6530 6531 6532 6533 6534
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6535 6536
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6537
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6538 6539
        self._checkpoints = checkpoints

6540
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6541 6542 6543
    def _enable_offload(self):
        self.enable_offload = True

6544 6545
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6546
        """
6547
            :api_attr: Static Graph
S
swtkiwi 已提交
6548

M
mapingshuo 已提交
6549 6550 6551 6552
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6553
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6554 6555 6556 6557

        Examples:
            .. code-block:: python

6558
                import paddle
M
mapingshuo 已提交
6559
                import paddle.fluid as fluid
6560

6561
                paddle.enable_static()
M
mapingshuo 已提交
6562
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6563 6564
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6565 6566 6567 6568 6569
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6570
                    return sum_cost, fc_1, prediction
6571

G
GGBond8488 已提交
6572 6573
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6574 6575
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6576

M
mapingshuo 已提交
6577 6578 6579 6580
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6581 6582
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6583
                except NotImplementedError as e:
6584
                    print(e)
M
mapingshuo 已提交
6585 6586
        """
        raise NotImplementedError(
6587 6588
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

6603
                import paddle
M
mapingshuo 已提交
6604 6605 6606
                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

6607 6608
                paddle.enable_static()

M
mapingshuo 已提交
6609
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6610 6611
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6612 6613 6614 6615 6616
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6617 6618 6619
                    return sum_cost, fc_1, prediction


G
GGBond8488 已提交
6620 6621
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6622 6623 6624 6625 6626
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6627
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6628 6629 6630 6631
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6632
                    no_grad_set=None)
M
mapingshuo 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6652 6653
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6654 6655 6656 6657 6658 6659

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6660 6661
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6662 6663 6664 6665 6666 6667 6668 6669

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6670 6671 6672
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6699 6700 6701

        return

6702 6703 6704
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6705 6706 6707 6708 6709 6710 6711 6712
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6713 6714
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6715 6716

    def _insert_fetch_op(self, idx, varname):
6717 6718 6719 6720 6721
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6722 6723 6724

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6725
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6726 6727

    def _insert_offload_op(self, idx, varname):
6728 6729 6730 6731 6732
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6733
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6734
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6735 6736

    def _insert_sync_op(self, op_idx, checkpoint_name):
6737
        # single stream offload no need sync
J
JZ-LIANG 已提交
6738 6739 6740
        pass

    def _record_fetch_op(self, idx):
6741 6742 6743
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6744 6745 6746 6747 6748 6749 6750 6751
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6752 6753 6754 6755 6756
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6757 6758 6759 6760
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6761 6762 6763
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6764 6765 6766 6767 6768 6769 6770
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6771
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
6786 6787
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
6788 6789 6790

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
6791 6792
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
6793 6794
        last_last_fetch_checkpoint = None

6795
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
6796 6797 6798 6799 6800 6801 6802 6803 6804
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
6805 6806 6807
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
6808
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6809
                            if input_var != self.sorted_checkpoint_names[0]:
6810 6811 6812
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
6813

6814
                        # should check the current used checkpoint is ths last fetch one
6815 6816 6817 6818 6819
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
6820 6821 6822
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
6823 6824
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
6825 6826 6827 6828
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
6829 6830 6831
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
6832

6833 6834 6835 6836 6837
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6848
                    logging.debug(
6849 6850
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6851 6852 6853 6854 6855
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
6856 6857 6858 6859 6860
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6861 6862 6863 6864

    def _parse_forward(self):

        self.idx2insertions = {}
6865
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6866 6867 6868 6869 6870 6871 6872
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
6873
                'idx': -1,
J
JZ-LIANG 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
6883 6884
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
6885 6886
        last_offload_checkpoint = None

6887
        for i, op in enumerate(
6888 6889
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
6890 6891 6892 6893 6894 6895 6896

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
6897 6898 6899 6900 6901
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
6902 6903 6904

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
6905
                        if last_offload_checkpoint is not None:
6906 6907 6908 6909 6910 6911 6912 6913 6914
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6915
                            else:
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6929 6930 6931 6932 6933
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6934 6935 6936 6937
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
6938 6939
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
6953
                    # sync if last checkpoint has not been sync
6954 6955 6956 6957 6958 6959
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
6960 6961 6962
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
6973
            # record checkpoint usage
J
JZ-LIANG 已提交
6974 6975
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
6976 6977 6978
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
6979 6980 6981
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

6982 6983 6984 6985 6986
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6987 6988 6989
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
6990 6991
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
6992 6993 6994 6995 6996

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
6997 6998
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
6999 7000 7001 7002
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
7003
                    logging.debug(
7004 7005
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7006 7007 7008
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
7009
                    logging.debug(
7010 7011
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7012 7013 7014
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
7015 7016 7017 7018 7019
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7020 7021 7022 7023 7024 7025 7026 7027

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
7028
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
7029 7030 7031 7032 7033 7034
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
7035
        if startup_program is None:
J
JZ-LIANG 已提交
7036
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
7037 7038

        with program_guard(self._main_program, startup_program):
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
7049 7050 7051 7052
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
7053 7054
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
7055
                self.checkpoint_name2pinned_name[
7056 7057
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
7058
                self.checkpoint_name2fetch_name[
7059 7060
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

7074 7075 7076 7077 7078 7079 7080 7081
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7082 7083 7084 7085 7086 7087 7088
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7089 7090
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7091 7092 7093 7094 7095 7096 7097
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

7098
                import paddle
M
mapingshuo 已提交
7099
                import paddle.fluid as fluid
7100

7101 7102
                paddle.enable_static()

M
mapingshuo 已提交
7103
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7104 7105
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7106 7107 7108 7109 7110
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
7111
                    return sum_cost, fc_1, prediction
7112 7113


G
GGBond8488 已提交
7114 7115
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7116 7117
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7118

M
mapingshuo 已提交
7119 7120
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7121
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7122 7123 7124 7125
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7126
                    no_grad_set=None)
M
mapingshuo 已提交
7127 7128
                print("Finished backward")
        """
7129 7130 7131
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7132

姜永久 已提交
7133
        if in_dygraph_mode():
M
mapingshuo 已提交
7134
            raise NotImplementedError(
7135 7136
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7137 7138 7139 7140

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7141 7142 7143 7144 7145 7146 7147
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7148 7149 7150 7151 7152 7153
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7154 7155
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7156
            else:
7157 7158 7159 7160 7161 7162
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7163 7164 7165 7166 7167

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
7180
                import paddle
M
mapingshuo 已提交
7181
                import paddle.fluid as fluid
7182

7183 7184
                paddle.enable_static()

M
mapingshuo 已提交
7185
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7186 7187
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7188 7189 7190 7191 7192
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
7193 7194
                    return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7195 7196
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7197 7198
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7199

M
mapingshuo 已提交
7200 7201
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7202
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7203 7204 7205 7206
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7207
                    no_grad_set=None)
7208

M
mapingshuo 已提交
7209 7210
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7211

M
mapingshuo 已提交
7212 7213 7214
                print("Finished apply_optimize")
        """

7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7227
        assert isinstance(loss, Variable), "The loss should be an Variable."
7228 7229 7230
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
姜永久 已提交
7231
        if in_dygraph_mode():
M
mapingshuo 已提交
7232
            raise NotImplementedError(
7233 7234 7235 7236 7237 7238 7239 7240
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7241

7242 7243 7244
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7245 7246 7247 7248

        return optimize_ops, params_grads


7249
class LookaheadOptimizer:
7250
    r"""
7251
        :api_attr: Static Graph
S
swtkiwi 已提交
7252

M
mapingshuo 已提交
7253 7254 7255 7256
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7257 7258
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7259 7260 7261
    every k training steps as follows:

    .. math::
7262

M
mapingshuo 已提交
7263
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7264

7265
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7266 7267

    Args:
7268
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7278
            import numpy.random as random
M
mapingshuo 已提交
7279

7280
            paddle.enable_static()
7281

G
GGBond8488 已提交
7282 7283
            x = paddle.static.data(name='x', shape=[-1,2], dtype='float32')
            label = paddle.static.data(name="label", shape=[-1,1], dtype="int64")
C
Charles-hit 已提交
7284
            y = paddle.static.nn.fc(x=[x], size=2, activation="softmax")
7285 7286 7287 7288
            loss = paddle.nn.functional.cross_entropy(
                input=y, label=label,
                reduction='none', use_softmax=False
            )
7289
            loss = paddle.mean(x=loss)
7290 7291 7292 7293 7294 7295 7296 7297 7298
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7299

7300 7301 7302
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7303

7304 7305
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7306

7307 7308 7309
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7310 7311 7312 7313 7314

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

姜永久 已提交
7315
        if in_dygraph_mode():
Z
zhongpu 已提交
7316
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7317
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7318 7319 7320
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7321
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7332 7333
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7345 7346 7347 7348 7349 7350 7351
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7352 7353 7354 7355 7356 7357
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7358 7359 7360 7361 7362 7363 7364
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7365

7366 7367 7368
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7369

7370 7371
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7372
            k = paddle.static.create_global_var(
7373 7374 7375 7376 7377 7378
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7379

7380
            # Add Var alpha to main prog and startup prog
7381
            alpha = paddle.static.create_global_var(
7382 7383 7384 7385 7386 7387
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7388

7389
            # Add Var step
7390
            step = paddle.static.create_global_var(
7391 7392 7393 7394 7395 7396
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7397
            paddle.increment(x=step, value=1.0)
7398 7399

            # lookahead
7400
            zero_var = paddle.tensor.fill_constant(
7401 7402
                shape=[1], dtype='float32', value=0.0
            )
7403

7404
            one_var = paddle.tensor.fill_constant(
7405 7406
                shape=[1], dtype='float32', value=1.0
            )
7407

7408
            mod = paddle.remainder(step, k)
7409
            with layers.control_flow.Switch() as switch:
7410 7411 7412 7413
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7414
                        paddle.assign(fast_var, output=slow_var)
7415 7416 7417 7418
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7419 7420 7421 7422
                        tmp_var = paddle.add(
                            paddle.multiply(fast_var, alpha),
                            paddle.multiply(
                                slow_var, paddle.subtract(one_var, alpha)
7423 7424
                            ),
                        )
7425 7426
                        paddle.assign(tmp_var, output=slow_var)
                        paddle.assign(tmp_var, output=fast_var)
7427 7428
                with switch.default():
                    pass
M
mapingshuo 已提交
7429
        return mini_out
7430 7431


7432
class GradientMergeOptimizer:
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

7455
        import paddle
7456 7457 7458 7459 7460 7461 7462 7463
        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7464 7465
            fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
            prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7466 7467 7468 7469 7470
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=input_y,
                reduction='none', use_softmax=False
            )
            sum_cost = paddle.mean(cost)
7471 7472
            return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7473 7474
        input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7491 7492
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7493
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
姜永久 已提交
7494
        if in_dygraph_mode():
7495 7496 7497
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7498 7499
                "and one-time optimizer.minimize()"
            )
7500

7501 7502 7503 7504
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7505 7506 7507 7508 7509

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7510
        self._optimize_ops = None
7511

7512 7513 7514 7515 7516 7517
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7518 7519 7520 7521 7522 7523 7524 7525
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7526 7527 7528 7529 7530 7531 7532 7533 7534
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7535 7536
            loss, startup_program=startup_program
        )
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7548 7549 7550
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7551 7552 7553 7554 7555 7556
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7557 7558 7559 7560 7561
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7562 7563 7564

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7601
        k_step_var = paddle.static.create_global_var(
7602 7603 7604 7605 7606 7607 7608 7609
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

7610
        zero_var = paddle.static.create_global_var(
7611 7612 7613 7614 7615 7616 7617
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7618 7619

        # Add step var & cond var
7620
        step_var = paddle.static.create_global_var(
7621 7622 7623 7624 7625 7626 7627
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7628

7629 7630 7631
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7632 7633 7634

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
7635
            paddle.increment(x=step_var, value=1.0)
7636 7637 7638 7639 7640 7641
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7642 7643

            # cond_var = (step_var == 0)
7644 7645 7646 7647 7648
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7659

7660
        # TODO(mapingshuo) support sparse embedding
7661 7662
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7663
            assert (
7664
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7665 7666
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7667
            self._remove_op_role_var(param, grad)
7668

7669
        param_to_grad = {k.name: v for (k, v) in params_grads}
7670 7671 7672
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7673 7674 7675 7676 7677
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7678
            param_var = main_block.var(param_name)
7679 7680 7681 7682 7683 7684 7685
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7686
            param_to_gradient_merge[param_name] = gradient_merge_var
7687

7688 7689 7690 7691
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7703

7704 7705 7706
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7707
                inputs={'X': grad, 'Y': gradient_merge_var},
7708
                outputs={'Out': gradient_merge_var},
7709 7710 7711 7712 7713
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7714 7715 7716 7717 7718 7719 7720 7721
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7722
            op_maker = core.op_proto_and_checker_maker
7723 7724 7725 7726

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7740

7741 7742 7743 7744 7745 7746
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7747

7748
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7749 7750
                new_params_grads
            )
7751

7752 7753
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7754
                paddle.tensor.fill_constant(
7755 7756 7757 7758 7759 7760 7761 7762
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7763 7764

        # step3. apply gradient
7765
        paddle.static.nn.cond(cond, true_fn=true_apply_gradient, false_fn=None)
7766 7767 7768

        return self._optimize_ops

7769 7770 7771
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7772 7773
        assert isinstance(loss, Variable), "The loss should be an Variable."

7774 7775 7776 7777 7778 7779
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
7780

7781 7782 7783
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
7784 7785

        return optimize_ops, params_grads