dist_multi_trainer.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20
#include "paddle/fluid/framework/device_worker_factory.h"
21
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
22 23 24 25 26
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

27 28
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
29
  thread_num_ = trainer_desc.thread_num();
30
  SetDataset(dataset);
D
dongdaxiang 已提交
31

H
hutuxian 已提交
32
  ParseDumpConfig(trainer_desc);
X
xujiaqi01 已提交
33 34
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
35
  dump_file_num_ = trainer_desc.dump_file_num();
36
  const std::vector<paddle::framework::DataFeed *> readers =
37
      dataset->GetReaders();
38

39 40
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
41 42 43 44 45
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
46

47 48 49 50
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
51
    workers_[i]->SetDataFeed(readers[i]);
H
hutuxian 已提交
52 53 54 55 56
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
57
    workers_[i]->Initialize(trainer_desc);
58 59
  }

D
dongdaxiang 已提交
60
  VLOG(3) << "going to initialize pull dense worker";
61 62
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
63
  VLOG(3) << "initialize pull dense worker";
64
  SetDebug(trainer_desc.debug());
65 66
}

67 68 69 70 71
void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
T
Thunderbrook 已提交
72 73 74 75 76 77 78 79 80
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
81
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
T
Thunderbrook 已提交
82
  }
83 84
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program,
                                      const platform::Place &place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetReaderPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  // Scope* -> thread id, it will be used in push_dense op
  for (int i = 0; i < thread_num_; ++i) {
    Scope *thread_scope = workers_[i]->GetThreadScope();
    pull_dense_worker_->SetThreadIdByScope(thread_scope, i);
  }
}

101
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
102 103 104
  if (need_dump_field_) {
    InitDumpEnv();
  }
105
  pull_dense_worker_->SetRootScope(root_scope_);
106
  pull_dense_worker_->Start();
D
dongdaxiang 已提交
107
  VLOG(3) << "init other env done.";
108 109
}

110 111 112 113 114 115 116 117 118 119 120 121
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

122 123 124 125
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

126
void DistMultiTrainer::Finalize() {
127
  for (auto &th : threads_) {
128 129
    th.join();
  }
130
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
131 132 133 134 135 136 137 138 139 140 141 142 143
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
144 145 146 147 148 149 150 151 152 153 154 155
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
156 157 158 159 160
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

161 162 163
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
164
  pull_dense_worker_->Stop();
165
  root_scope_->DropKids();
166 167 168 169

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
170 171
}

172 173 174 175 176 177 178 179 180
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
181 182
}  // namespace framework
}  // namespace paddle