nn.py 66.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""

import os
19
import warnings
20
import inspect
21 22

import numpy as np
23
import paddle
24
from paddle.fluid.layer_helper import LayerHelper
25
from paddle.fluid.layers import utils
Z
zhoushiyu 已提交
26
from ... import unique_name
C
Chengmo 已提交
27
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
28 29 30 31 32 33
from paddle.fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
34 35

from paddle.fluid import core
Z
Zhang Ting 已提交
36
from paddle.fluid.param_attr import ParamAttr
37

C
Chengmo 已提交
38
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
39
import paddle
40
import warnings
41
from paddle import _C_ops, _legacy_C_ops
42

43
__all__ = [
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'fused_embedding_seq_pool',
    'multiclass_nms2',
    'search_pyramid_hash',
    'shuffle_batch',
    'partial_concat',
    'sparse_embedding',
    'partial_sum',
    'tdm_child',
    'rank_attention',
    'tdm_sampler',
    'batch_fc',
    '_pull_box_extended_sparse',
    'bilateral_slice',
    'correlation',
    'fused_bn_add_act',
    'fused_seqpool_cvm',
60
]
61 62


63 64 65 66 67 68 69 70 71
def fused_embedding_seq_pool(
    input,
    size,
    is_sparse=False,
    padding_idx=None,
    combiner='sum',
    param_attr=None,
    dtype='float32',
):
72
    r"""
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid

            dict_size = 20
C
Chengmo 已提交
103 104
            data_t = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=1)
105 106 107 108 109 110 111 112 113
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
114 115 116
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
117
    out = helper.create_variable_for_type_inference(dtype)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='fused_embedding_seq_pool',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': out},
        attrs={
            'is_sparse': is_sparse,
            'combiner': combiner,
            'padding_idx': padding_idx,
        },
    )
135
    return out
136 137


138 139 140
def fused_seqpool_cvm(
    input, pool_type, cvm, pad_value=0.0, use_cvm=True, cvm_offset=2
):
D
danleifeng 已提交
141
    """
142
    :api_attr: Static Graph
D
danleifeng 已提交
143

144
    This OP is the fusion of sequence_pool and continuous_value_model op.
D
danleifeng 已提交
145

146
    **Note:** The Op only receives List of LoDTensor as input, only support SUM pooling now.
D
danleifeng 已提交
147 148 149 150 151

    Args:
        input(Variable|list of Variable): Input is List of LoDTensor.
        pool_type(str): pooling type, only support SUM pooling now.
        cvm(Variable): cvm Variable.
152 153 154 155
        pad_value(float, optional): padding value of sequence pool. Default: 0.0.
        use_cvm(bool, optional): use cvm or not. Default: True.
        cvm_offset(int, optional): cvm offset. Default: 2, which means cvm contains show, click.

D
danleifeng 已提交
156 157 158
    Returns:
        Variable|list of Variable: The tensor variable storing sequence pool and cvm
        of input.
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()

            data = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=1)
            data2 = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=1)
            inputs = [data, data2]
            embs = fluid.layers.nn._pull_box_sparse(input=inputs, size=11, is_distributed=True, is_sparse=True)

            label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64", lod_level=1)
            ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
            show_clk = paddle.cast(paddle.concat([ones, label], axis=1), dtype='float32')
            show_clk.stop_gradient = True

            cvms = fluid.contrib.layers.fused_seqpool_cvm(embs, 'sum', show_clk)


D
danleifeng 已提交
180 181 182 183 184 185
    """
    helper = LayerHelper('fused_seqpool_cvm', **locals())

    if pool_type.upper() != 'SUM':
        raise ValueError(
            "fused_seqpool_cvm only support SUM pooling now, and your type is: "
186 187
            + pool_type
        )
D
danleifeng 已提交
188 189 190 191

    check_type(input, 'input', list, 'fused_seqpool_cvm')
    if isinstance(input, list):
        for _input in input:
192 193 194
            check_variable_and_dtype(
                _input, 'input', ['float32'], 'fused_seqpool_cvm'
            )
D
danleifeng 已提交
195 196 197 198 199 200 201 202

    dtype = helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]

203 204 205 206 207 208 209 210 211 212 213
    helper.append_op(
        type="fused_seqpool_cvm",
        inputs={"X": inputs, "CVM": cvm},
        outputs={"Out": outs},
        attrs={
            "pooltype": pool_type.upper(),
            "pad_value": pad_value,
            "use_cvm": use_cvm,
            "cvm_offset": cvm_offset,
        },
    )
D
danleifeng 已提交
214 215 216 217

    return outs


218 219 220 221 222 223 224 225 226 227 228 229 230
def multiclass_nms2(
    bboxes,
    scores,
    score_threshold,
    nms_top_k,
    keep_top_k,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=0,
    return_index=False,
    name=None,
):
231 232
    """
    **Multiclass NMS2**
C
Chengmo 已提交
233

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
C
Chengmo 已提交
251
                           coordinate values and the layout is
252 253
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
C
Chengmo 已提交
254 255
                           M is the number of bounding boxes, C is the
                           class number
256 257 258
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
C
Chengmo 已提交
259 260
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
261 262 263 264 265 266 267
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
C
Chengmo 已提交
268
        background_label (int): The index of background label, the background
269 270 271
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
C
Chengmo 已提交
272
                                 low confidence score. If not provided,
273 274
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
275
                         the confidences after the filtering detections based
276 277 278 279 280 281 282 283 284 285 286
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
C
Chengmo 已提交
287 288 289 290 291 292
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
293 294
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
C
Chengmo 已提交
295 296 297 298 299
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
326 327 328 329 330 331 332 333 334 335 336 337 338 339
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes, 'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized,
        },
        outputs={'Out': output, 'Index': index},
    )
340 341 342 343 344 345
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output
A
Aurelius84 已提交
346 347


348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
def search_pyramid_hash(
    input,
    num_emb,
    space_len,
    pyramid_layer,
    rand_len,
    drop_out_percent,
    is_training,
    use_filter,
    white_list_len,
    black_list_len,
    seed,
    lr,
    param_attr=None,
    param_attr_wl=None,
    param_attr_bl=None,
    name=None,
    distribute_update_vars=None,
    dtype='float32',
):
A
Aurelius84 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    """
    **Pyramid hash embedding**

    Args:
        input (Variable): LoDTensor<int32> Variable contained the IDs' information.
        num_emb (int): The embedding size of output.
        space_len (int): The length of pyramid hash embedding space.
        pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
        rand_len (int): The minimum length of pyramid hash cell.
        drop_out_percent (float): The probability of dropping out the input token randomly.
            It should satisfy: [0., 1.]
        is_training (bool): Whether in training or testing phrase.
        use_filter(bool): If set True, the white filter and black filter should be given by
            :attr:`param_attr_wl` and :attr:`param_attr_bl` .
        white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
            should be provided by param_attr_wl.
        black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
            should be provided by param_attr_bl.
        seed(int): The number of random seed.
        lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
            in this layer.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr_wl(ParamAttr): Specified parameters of white filter.
        param_attr_bl(ParamAttr): Specified parameters of black filter.
C
Chengmo 已提交
393
        distribute_update_vars(list[ParamAttr.name]): Decided which params should be updated in distribute training.
C
Chengmo 已提交
394
            Used in Distribute Transpiler to create a trainer/server program.
A
Aurelius84 已提交
395 396 397 398 399 400 401 402 403
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
        dtype(str): The data type of output variable, float32.
    Returns:
        Variable: LoDTensor of pyramid hash embedding.
    """
    helper = LayerHelper('search_pyramid_hash', **locals())

    w_shape = [space_len + rand_len, 1]
404 405 406
    w = helper.create_parameter(
        attr=param_attr, shape=w_shape, dtype=dtype, is_bias=False
    )
A
Aurelius84 已提交
407 408 409 410 411
    w.stop_gradient = True

    input_vars = {'X': input, 'W': w}
    if white_list_len > 0:
        wl_shape = [white_list_len, 1]
412 413 414
        white_list = helper.create_parameter(
            attr=param_attr_wl, shape=wl_shape, dtype=dtype, is_bias=False
        )
A
Aurelius84 已提交
415 416 417 418 419
        white_list.stop_gradient = True
        input_vars['WhiteList'] = white_list

    if black_list_len >= 0:
        bl_shape = [black_list_len, 1]
420 421 422
        black_list = helper.create_parameter(
            attr=param_attr_bl, shape=bl_shape, dtype=dtype, is_bias=False
        )
A
Aurelius84 已提交
423 424 425
        black_list.stop_gradient = True
        input_vars['BlackList'] = black_list

C
Chengmo 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438
    distribute_update_vars_str = ""
    if distribute_update_vars:
        assert isinstance(distribute_update_vars, list)
        special_name_list = []
        if param_attr:
            special_name_list.append(param_attr.name)
        if param_attr_wl:
            special_name_list.append(param_attr_wl.name)
        if param_attr_bl:
            special_name_list.append(param_attr_bl.name)
        for param in distribute_update_vars:
            if param not in special_name_list:
                raise ValueError(
439 440
                    "Pyramid Hash layer didn't have parameter {}".format(param)
                )
C
Chengmo 已提交
441 442
        distribute_update_vars_str = ",".join(distribute_update_vars)

A
Aurelius84 已提交
443 444 445
    res = helper.create_variable_for_type_inference(dtype)
    drop_pos = helper.create_variable_for_type_inference(dtype)
    x_temp_out = helper.create_variable_for_type_inference(dtype)
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    helper.append_op(
        type='pyramid_hash',
        inputs=input_vars,
        outputs={"Out": res, "X_Temp_Out": x_temp_out, 'DropPos': drop_pos},
        attrs={
            'num_emb': num_emb,
            'space_len': space_len,
            'pyramid_layer': pyramid_layer,
            'rand_len': rand_len,
            'drop_out_percent': drop_out_percent,
            'is_training': is_training,
            'use_filter': use_filter,
            'white_list_len': white_list_len,
            'black_list_len': black_list_len,
            'seed': seed,
            'lr': lr,
            'distribute_update_vars': distribute_update_vars_str,
        },
    )
A
Aurelius84 已提交
465 466

    return res
Z
zhoushiyu 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520


def shuffle_batch(x, seed=None):
    """
    This layer shuffle input tensor :attr:`x` . Normally, :attr:`x` is 2-D LoDTensor.

    :attr:`x` is a LoDTensor to be shuffled with shape :math:`[N_1, N_2, ..., N_k, D]` . Note that the last dim of input will not be shuffled.
    :math:`N_1 * N_2 * ... * N_k` numbers of elements with length :math:`D` will be shuffled randomly.

    For Example:

    .. code-block:: text

      Input:
        x.data = [[1, 2], [3, 4], [5, 6], [7, 8]]
        x.dims = [4, 2]

      Attrs:
        seed = 2019

      Output:
        Out.data =[[7, 8], [1, 2], [3, 4], [5, 6]]
        Out.dims = [4, 2]

    Args:
        x (Variable): The input variable. The input variable is a N-D LoDTensor with type int, float32 or float64.
        seed (None|int|Variable): The start up seed. If set, seed will be set as the start up seed of shuffle engine.
                If not set(Default), start up seed of shuffle engine will be generated randomly.

    Returns:
        Variables: The shuffled LoDTensor with the same shape and lod as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[-1, 4])
            out = fluid.contrib.layers.shuffle_batch(x)
    """
    helper = LayerHelper('shuffle_batch', **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    shuffle_idx = helper.create_variable_for_type_inference(dtype=np.int64)
    if seed is None and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed
    if seed is None:
        seed = np.random.randint(-65536, 65535)
    op_attrs = {}
    if isinstance(seed, int):
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("shuffle_batch_seed"),
            dtype="int64",
521 522 523 524 525 526 527 528
            persistable=False,
        )
    helper.append_op(
        type='shuffle_batch',
        inputs={'X': x, 'Seed': seed},
        outputs={'Out': out, 'ShuffleIdx': shuffle_idx, 'SeedOut': seed},
        attrs=op_attrs,
    )
Z
zhoushiyu 已提交
529
    return out
530 531 532 533 534 535 536


def partial_concat(input, start_index=0, length=-1):
    """
    **Partial Concat**
    This OP concatenates the inputs according to the start index and length. This
    OP exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
537
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
538 539 540
    performed along the second dimension.

    .. code-block:: text
C
Chengmo 已提交
541

542 543 544 545 546 547 548 549
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_concat([x, y], start_index=0, length=2)

          we get:
C
Chengmo 已提交
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
            output = [[0, 1, 6, 7],
                      [3, 4, 9, 10]]

    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        start_index(int32): The start index of each instance for partial concatenation.
            Default is 0.
        length(int32): The length of each instance for partial concatenation. Default is -1.
            Negative values for all elements after start_index.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            x = fluid.data(name="x", shape=[None,3], dtype="float32")
            y = fluid.data(name="y", shape=[None,3], dtype="float32")
C
Chengmo 已提交
568 569
            concat = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
570 571 572 573
    """
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in partial_concat should be list, but received %s."
574 575
            % (type(input))
        )
576 577 578
        input = [input]
    for id, x in enumerate(input):
        check_variable_and_dtype(
579 580
            x,
            'input[' + str(id) + ']',
581
            ['float16', 'float32', 'float64', 'int32', 'int64'],
582 583
            'partial_concat',
        )
584 585 586 587 588 589
    check_type(start_index, 'start_index', (int), 'partial_concat')
    check_type(length, 'length', (int), 'partial_concat')
    inputs = {'X': input}
    attrs = {'start_index': start_index, 'length': length}
    helper = LayerHelper('partial_concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
590 591 592 593 594 595
    helper.append_op(
        type='partial_concat',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
    )
596
    return out
597 598 599 600 601


def partial_sum(input, start_index=0, length=-1):
    """
    **PartialSum**
C
Chengmo 已提交
602
    This Op can sum the vars by specifying the initial position(start_index) and length(length).
603
    This Op exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
604
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
605 606
    performed along the second dimension.
    .. code-block:: text
C
Chengmo 已提交
607

608 609 610 611 612 613 614
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_sum([x, y], start_index=0, length=2)
          we get:
C
Chengmo 已提交
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
            output = [[6, 8],
                      [12, 14]]
    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
        import paddle.fluid.layers as layers
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 3], dtype="float32")
        y = fluid.data(name="y", shape=[None, 3], dtype="float32")
        sum = layers.partial_sum([x,y], start_index=0, length=2)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        xx = np.array([1,2,3,4,5,6]).reshape((2,3)).astype("float32")
        yy = np.array([6,5,4,4,5,6]).reshape((2,3)).astype("float32")
        out = exe.run(feed={"x":xx, "y":yy}, fetch_list=[sum])
    """
    for id, x in enumerate(input):
638 639 640 641 642 643
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'partial_sum',
        )
644 645 646 647 648 649 650

    inputs = {'X': input}
    attrs = {}
    attrs['start_index'] = start_index
    attrs['length'] = length
    helper = LayerHelper('partial_sum', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
651 652 653
    helper.append_op(
        type='partial_sum', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
    )
654
    return out
C
Chengmo 已提交
655 656


657 658 659 660 661 662 663 664 665 666 667
def sparse_embedding(
    input,
    size,
    padding_idx=None,
    is_test=False,
    entry=None,
    table_class="MemorySparseTable",
    param_attr=None,
    dtype='float32',
    slot=None,
):
Y
Yanxing Shi 已提交
668 669 670
    r"""
    :api_attr: Static Graph

671
    The OP is used as the operator of the Embedding Lookup layer in the large-scale
Y
Yanxing Shi 已提交
672 673
    sparse training of the parameter server mode, instead of using the paddle.nn.functional.embedding.

674 675
    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the input :attr:`size`
Y
Yanxing Shi 已提交
676 677 678 679 680
    (vocab_size, emb_size) and :attr:`dtype` .

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

681
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , otherwise
Y
Yanxing Shi 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[1, 3], [2, 4], [4, 127]]
            input.shape = [3, 2]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
699

Y
Yanxing Shi 已提交
700 701 702 703
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
704

Y
Yanxing Shi 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
        Case 2:

        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 1, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
                        [[0.345421456, 0.524563927, ..., 0.144534654]],
                        [[0.345249859, 0.124939536, ..., 0.194353745]],
                        [[0.945345345, 0.435394634, ..., 0.435345365]],
                        [[0.0,         0.0,         ..., 0.0        ]]]  # padding data
        It will pad all-zero data when ids is 0.

    Args:
723
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id
Y
Yanxing Shi 已提交
724
            information. The value of the input id should satisfy :math:`0<= id < size[0]` .
725 726 727 728
        size(tuple|list): The shape of lookup table parameter (vocab_size, emb_size). It
            should have two elements which indicates the size of the dictionary of embeddings
            and the size of each embedding vector respectively. The initial parameter size
            is 0 in the large-scale sparse scenario, which will gradually expand with the
Y
Yanxing Shi 已提交
729 730
            training. So if vocab_size is temporarily useless, its value can be any integer.
            The emb_size is the dimensional configuration of the word embedding weight parameter.
731
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Y
Yanxing Shi 已提交
732
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
733 734
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated
Y
Yanxing Shi 已提交
735
            while training. If set None, it makes no efe mfect to output. Default: None.
736
        is_test(bool, optional): Training or prediction mode. In prediction mode (is_test=False),
Y
Yanxing Shi 已提交
737
            the output is not initialized and created, and it is filled with 0 and returned. Default: False.
738
        entry(str, optional): Entry config with parameter server whose value is ProbabilityEntry,
Y
Yanxing Shi 已提交
739
            CountFilterEntry or None. Default: None.
740
        table_class(str, optional): The type of the sparse table. The value can be CommonSparseTable
Y
Yanxing Shi 已提交
741 742
            or SSDSparseTable. The default is CommonSparseTable.
        param_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
743 744 745
            default weight parameter property is used. In addition, user-defined or pre-trained word
            vectors can be loaded with the :attr:`param_attr` parameter. The local word vector needs
            to be transformed into numpy format, and the shape of local word vector should be consistent
Y
Yanxing Shi 已提交
746
            with :attr:`size` .
747
        dtype(str): It refers to the data type of output Tensor. It must be float32 or
Y
Yanxing Shi 已提交
748
            float64. Default: float32.
749

Y
Yanxing Shi 已提交
750 751
    Returns:
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
752

Y
Yanxing Shi 已提交
753 754 755 756
    Examples:
        .. code-block:: python

            import paddle
757

Y
Yanxing Shi 已提交
758 759 760 761 762 763 764 765
            paddle.enable_static()
            sparse_feature_dim = 1024
            embedding_size = 64

            # Only when the feature appear more than 10 times or more will be participated in the training.
            entry = paddle.distributed.CountFilterEntry(10)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')
766

Y
Yanxing Shi 已提交
767 768 769 770 771 772 773 774 775 776
            emb = paddle.static.nn.sparse_embedding(
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                initializer=paddle.nn.initializer.Uniform()))

    """

777 778
    helper = LayerHelper('sparse_embedding', **locals())

779 780 781
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.contrib.layers.sparse_embedding'
    )
782

783 784 785 786 787 788
    check_dtype(
        dtype,
        'dtype',
        ['float32', 'float64'],
        'paddle.static.nn.sparse_embedding',
    )
789

790 791 792 793 794 795 796
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=size,
        type=core.VarDesc.VarType.SELECTED_ROWS,
        dtype=dtype,
        is_bias=False,
    )
797 798 799

    tmp = helper.create_variable_for_type_inference(dtype)

800 801 802 803 804 805 806
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
807

808
    if table_class not in [
809 810 811
        "CommonSparseTable",
        "SSDSparseTable",
        "MemorySparseTable",
812
    ]:
T
Thunderbrook 已提交
813
        raise ValueError(
814 815
            "table_class must be in [CommonSparseTable, SSDSparseTable, MemorySparseTable]"
        )
T
Thunderbrook 已提交
816

817 818 819
    entry_str = "none"

    if entry is not None:
T
tangwei12 已提交
820
        if entry.__class__.__name__ not in [
821 822 823
            "ProbabilityEntry",
            "CountFilterEntry",
            "ShowClickEntry",
T
tangwei12 已提交
824
        ]:
825
            raise ValueError(
826
                "entry must be instance in [paddle.distributed.ProbabilityEntry, paddle.distributed.CountFilterEntry, paddle.distributed.ShowClickEntry]"
T
tangwei12 已提交
827 828
            )
        entry_str = entry._to_attr()
829

830
    if slot is None:
831 832
        slot = 0

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'padding_idx': padding_idx,
            'is_sparse': True,
            'is_distributed': True,
            'remote_prefetch': True,
            'is_test': is_test,
            'entry': entry_str,
            'table_class': table_class,
            'slot': slot,
        },
    )
848 849 850
    return tmp


C
Chengmo 已提交
851 852 853
def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
    """
    **Tdm Child**
854
     According to the input node_id on the given tree, return the corresponding child node_id and
C
Chengmo 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
      whether child is a leaf node by leaf_mask value.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            x = [[2], [3]]
            node_nums = 7
            child_nums = 2

          we get:
            child = [[5, 6],
                     [0, 0]]
            leaf_mask = [[1, 1],
                         [0, 0]]
    Args:
        x(Variable): Variable contained the node_id information, dtype support int32/int64.
        node_nums(int): Number of total nodes.
        child_nums(int): Maximum number of child nodes per node.
        param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
875 876
            has shape(node_nums, 3 + child_nums), dtype support int32/int64.
            The dimension[1] of tdm-tree-info contains the following:
C
Chengmo 已提交
877 878 879
            1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
            2. Layer_id(int, shape(1)), indicates which layer the node is on.
            3. Parent_id(int, shape(1)), node's parent node.
880
            4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given.
C
Chengmo 已提交
881 882 883 884
            If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
        dtype(str): The data type of output child and leaf_mask, support int32/int64.

    Returns:
885
        tuple: A tuple including input node's child(Variable) and leaf_mask(Variable).
C
Chengmo 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        tree_info = [[0,0,0,1,2],
                     [0,1,0,3,4],[0,1,0,5,6],
                     [0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
        tree_info_np = np.array(tree_info)
        tree_info_np = np.reshape(tree_info_np, (7,5))
        node_nums = 7
        child_nums = 2
        child, leaf_mask  = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
                                param_attr=fluid.ParamAttr(
                                    initializer=fluid.initializer.NumpyArrayInitializer(
                                                                            tree_info_np)))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
        child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
909
    """
C
Chengmo 已提交
910
    helper = LayerHelper("tdm_child", **locals())
911 912 913
    check_dtype(
        dtype, 'dtype', ['int32', 'int64'], 'fluid.contrib.layers.tdm_child'
    )
C
Chengmo 已提交
914
    c_dtype = convert_np_dtype_to_dtype_(dtype)
915 916 917 918 919 920
    tree_info = helper.create_parameter(
        attr=helper.param_attr,
        shape=[node_nums, 3 + child_nums],
        dtype=dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
921 922 923 924 925
    tree_info.stop_gradient = True

    child = helper.create_variable_for_type_inference(dtype=dtype)
    leaf_mask = helper.create_variable_for_type_inference(dtype=dtype)

926 927 928 929 930 931 932
    helper.append_op(
        type='tdm_child',
        inputs={'X': x, 'TreeInfo': tree_info},
        outputs={'Child': child, 'LeafMask': leaf_mask},
        attrs={'child_nums': child_nums, 'dtype': c_dtype},
        stop_gradient=True,
    )
C
Chengmo 已提交
933
    return (child, leaf_mask)
S
ShenLiang 已提交
934 935


936 937 938 939 940 941 942 943 944 945 946 947 948
def tdm_sampler(
    x,
    neg_samples_num_list,
    layer_node_num_list,
    leaf_node_num,
    tree_travel_attr=None,
    tree_layer_attr=None,
    output_positive=True,
    output_list=True,
    seed=0,
    tree_dtype='int32',
    dtype='int32',
):
C
Chengmo 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    """
    **Tdm Sampler**
    According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
            layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)

            x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
            neg_samples_num_list = [0, 0] # negative sample nums = 0
            layer_node_num_list = [2, 4]
            leaf_node_num = 4
            output_list = False

          we get:
            out = [[1, 3], [1, 4], [2, 5], [2, 6]]
            labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
            mask = [[1, 1], [1, 1], [1, 1], [1, 1]]

    Args:
        x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
        neg_samples_num_list (list(int)): Number of negative samples per layer.
        layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
        leaf_node_num (int): Number of leaf nodes.
        tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
976
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
C
Chengmo 已提交
977 978
            has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
        tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
979
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
C
Chengmo 已提交
980 981 982 983 984
            has shape (node_num, 1), dtype support int32/int64.
        output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
        output_list (bool): Whether to divide the output into layers and organize it into list format.
        seed (int): The number of random seed.
        tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
985
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks)
C
Chengmo 已提交
986 987 988

    Returns:
        tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
989 990 991
            result  will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1,
            and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the
            sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1.
C
Chengmo 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
            If output_list = True, the result will organize into list format specified by layer information.
            Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
        layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)

        neg_samples_num_list = [0, 0] # negative sample nums = 0
        layer_node_num_list = [2, 4] #two layer (exclude root node)
        leaf_node_num = 4

        travel_array = np.array(travel_list)
        layer_array = np.array(layer_list_flat)

        sample, label, mask = fluid.contrib.layers.tdm_sampler(
            x,
            neg_samples_num_list,
            layer_node_num_list,
            leaf_node_num,
            tree_travel_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    travel_array)),
            tree_layer_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    layer_array)),
            output_positive=True,
            output_list=True,
            seed=0,
            tree_dtype='int32')

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")

        exe.run(feed={"x":xx})

    """
    helper = LayerHelper("tdm_sampler", **locals())
1035 1036 1037 1038 1039 1040 1041 1042 1043
    check_dtype(
        tree_dtype,
        'tree_dtype',
        ['int32', 'int64'],
        'fluid.contrib.layers.tdm_sampler',
    )
    check_dtype(
        dtype, 'dtype', ['int32', 'int64'], 'fluid.contrib.layers.tdm_sampler'
    )
C
Chengmo 已提交
1044 1045 1046 1047 1048 1049
    c_dtype = convert_np_dtype_to_dtype_(dtype)

    if len(neg_samples_num_list) != len(layer_node_num_list):
        raise ValueError(
            "The shape of negative samples list must match the shape of layers. "
            "But received len of neg_samples_num_list: {},"
1050 1051 1052 1053
            "and len of layer_node_num_list: {}, please check your input.".format(
                len(neg_samples_num_list), len(layer_node_num_list)
            )
        )
C
Chengmo 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    assert leaf_node_num is not None, "leaf_node_num should not be None here."

    layer_nums = 0
    node_nums = 0
    tree_layer_offset_lod = [0]
    for layer_idx, layer_node_num in enumerate(layer_node_num_list):
        layer_nums += 1
        node_nums += layer_node_num
        tree_layer_offset_lod.append(node_nums)
        if neg_samples_num_list[layer_idx] >= layer_node_num_list[layer_idx]:
            raise ValueError(
                "The number of negative samples must be less than the number of nodes "
                "in the layer {}, But received negative nums {}, and num of node at layer {} "
                "is {}, please check your input.".format(
1068 1069 1070 1071 1072 1073 1074 1075 1076
                    layer_idx,
                    neg_samples_num_list[layer_idx],
                    layer_idx,
                    layer_node_num_list[layer_idx],
                )
            )
    assert (
        leaf_node_num < node_nums
    ), "leaf_node_num must be less than total node nums."
C
Chengmo 已提交
1077 1078

    travel_shape = [leaf_node_num, layer_nums]
1079 1080 1081 1082 1083 1084
    travel = helper.create_parameter(
        attr=tree_travel_attr,
        shape=travel_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
1085 1086

    layer_shape = [node_nums, 1]
1087 1088 1089 1090 1091 1092
    layer = helper.create_parameter(
        attr=tree_layer_attr,
        shape=layer_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0),
    )
C
Chengmo 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    out = helper.create_variable_for_type_inference(dtype=dtype)
    out.stop_gradient = True

    labels = helper.create_variable_for_type_inference(dtype=dtype)
    labels.stop_gradient = True

    mask = helper.create_variable_for_type_inference(dtype=dtype)
    mask.stop_gradient = True

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    helper.append_op(
        type='tdm_sampler',
        inputs={"X": x, "Travel": travel, "Layer": layer},
        outputs={'Out': out, 'Labels': labels, 'Mask': mask},
        attrs={
            'neg_samples_num_list': neg_samples_num_list,
            'output_positive': output_positive,
            'layer_offset_lod': tree_layer_offset_lod,
            'seed': seed,
            'dtype': c_dtype,
        },
    )
C
Chengmo 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

    if output_list:
        output_list = []
        labels_list = []
        mask_list = []
        start_offset = 0
        positive_flag = 1
        if not output_positive:
            positive_flag = 0

        for layer_sample_num in neg_samples_num_list:
1126
            end_offset = start_offset + layer_sample_num + positive_flag
2
201716010711 已提交
1127
            layer_samples = paddle.slice(
1128 1129
                out, axes=[1], starts=[start_offset], ends=[end_offset]
            )
2
201716010711 已提交
1130
            layer_labels = paddle.slice(
1131 1132
                labels, axes=[1], starts=[start_offset], ends=[end_offset]
            )
2
201716010711 已提交
1133
            layer_mask = paddle.slice(
1134 1135 1136
                mask, axes=[1], starts=[start_offset], ends=[end_offset]
            )

1137
            layer_samples = paddle.reshape(
1138 1139
                layer_samples, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1140 1141
            layer_samples.stop_gradient = True

1142
            layer_labels = paddle.reshape(
1143 1144
                layer_labels, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1145 1146
            layer_labels.stop_gradient = True

1147
            layer_mask = paddle.reshape(
1148 1149
                layer_mask, [-1, layer_sample_num + positive_flag, 1]
            )
C
Chengmo 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            layer_mask.stop_gradient = True

            output_list.append(layer_samples)
            labels_list.append(layer_labels)
            mask_list.append(layer_mask)
            start_offset = end_offset

        out = output_list
        labels = labels_list
        mask = mask_list

    return (out, labels, mask)


1164 1165 1166 1167 1168 1169 1170 1171
def rank_attention(
    input,
    rank_offset,
    rank_param_shape,
    rank_param_attr,
    max_rank=3,
    max_size=0,
):
S
ShenLiang 已提交
1172 1173
    """
    **Rank Attention layer**
1174
    This Op can calculate rank attention between input and rank_param, and
S
ShenLiang 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    rank_param gives the organization of data. Notice: It currently supports
    GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        rank_offset: Tensor with data type int32.
        rank_para_shape: The shape of rank_param.
        rank_param_attr: Attribute initializer of rank_param.
        max_rank: The max rank of input's ranks.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           import numpy as np
C
Chengmo 已提交
1190

S
ShenLiang 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
           input = fluid.data(name="input", shape=[None, 2], dtype="float32")
           rank_offset = fluid.data(name="rank_offset", shape=[None, 7], dtype="int32")
           out = fluid.contrib.layers.rank_attention(input=input,
                                                     rank_offset=rank_offset,
                                                     rank_param_shape=[18,3],
                                                     rank_param_attr=
                                                       fluid.ParamAttr(learning_rate=1.0,
                                                                     name="ubm_rank_param.w_0",
                                                                     initializer=
                                                                     fluid.initializer.Xavier(uniform=False)),
1201 1202
                                                      max_rank=3,
                                                      max_size=0)
S
ShenLiang 已提交
1203 1204 1205 1206 1207 1208
    """
    helper = LayerHelper('rank_attention', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    input_shape = input.shape
    assert input_shape[1] * max_rank * max_rank == rank_param_shape[0]

1209 1210 1211
    rank_param = helper.create_parameter(
        attr=rank_param_attr, shape=rank_param_shape, dtype=dtype
    )
S
ShenLiang 已提交
1212 1213 1214
    rank_param.stop_gradient = False

    output = helper.create_variable_for_type_inference(dtype)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    input_help = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    ins_rank = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )

    helper.append_op(
        type="rank_attention",
        inputs={"X": input, "RankOffset": rank_offset, "RankParam": rank_param},
        outputs={"Out": output, "InputHelp": input_help, "InsRank": ins_rank},
        attrs={"MaxRank": max_rank, "MaxSize": max_size},
    )
S
ShenLiang 已提交
1228
    return output
S
ShenLiang 已提交
1229 1230 1231 1232 1233


def batch_fc(input, param_size, param_attr, bias_size, bias_attr, act=None):
    """
    **Batch FC layer**
1234 1235
    This Op can calculate BatchFC. This is similar to matmul op,
    except that the bias and relu activation layers are added.
S
ShenLiang 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    Notice: It currently supports GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        param_size: The size of w.
        param_attr: Attribute initializer of w.
        bias_size: The size of bias.
        bias_attr: Attribute initializer of bias.
        act: Activation to be applied to the output of this layer.

    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
1251

S
ShenLiang 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
           input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
           out = fluid.contrib.layers.batch_fc(input=input,
                                               param_size=[16, 3, 10],
                                               param_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="w_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                               bias_size=[16, 10],
                                               bias_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="b_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                                   act="relu")
    """

    helper = LayerHelper("batch_fc", **locals())
    check_type(input, 'input', (Variable), 'batch_fc')
    input_shape = input.shape
    assert input_shape[0] == param_size[0]
    assert input_shape[2] == param_size[1]
    assert param_size[2] == bias_size[1]
    assert input_shape[0] == bias_size[0]

    dtype = helper.input_dtype()
    check_dtype(dtype, 'input', ['float32', 'float64'], 'batch_fc')

1280 1281 1282 1283 1284 1285
    w = helper.create_parameter(
        attr=param_attr, shape=param_size, dtype=dtype, is_bias=False
    )
    b = helper.create_parameter(
        attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=False
    )
S
ShenLiang 已提交
1286
    pre_act = helper.create_variable_for_type_inference(dtype)
1287 1288 1289 1290 1291
    helper.append_op(
        type="batch_fc",
        inputs={"Input": input, "W": w, "Bias": b},
        outputs={"Out": pre_act},
    )
S
ShenLiang 已提交
1292
    return helper.append_activation(pre_act)
S
ShenLiang 已提交
1293 1294 1295


def _pull_box_extended_sparse(input, size, extend_size=64, dtype='float32'):
1296
    r"""
S
ShenLiang 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305
    **Pull Box Extended Sparse Layer**
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
1306
        extend_size(int): The embedding size parameter in extended dim,
S
ShenLiang 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
            which indicates the size of each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
      float32 now.
    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb, emb_ex = fluid.contrib.layers._pull_box_extended_sparse(input=data, size=8, extend_size=128)
    """
    helper = LayerHelper('pull_box_extended_sparse', **locals())
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    outs_extend = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
1330 1331 1332 1333 1334 1335
    helper.append_op(
        type='pull_box_extended_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs, 'OutExtend': outs_extend},
        attrs={'emb_size': size, 'emb_extended_size': extend_size},
    )
S
ShenLiang 已提交
1336 1337 1338
    if len(outs) == 1:
        return outs[0], outs_extend[0]
    return outs, outs_extend
L
LielinJiang 已提交
1339 1340 1341 1342 1343


def bilateral_slice(x, guide, grid, has_offset, name=None):
    """
    :alias_main: paddle.nn.functional.bilateral_slice
1344 1345
        :alias: paddle.nn.functional.bilateral_slice,paddle.nn.functional.vision.bilateral_slice
        :old_api: paddle.fluid.layers.bilateral_slice
L
LielinJiang 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

    This operation implements bilateral slicing on the input according to the guide map.
    For more information of bilateral slicing, please refer to Deep Bilateral Learning for Real-Time Image Enhancement <https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf>_

    Args:
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 and float64.
        guide(Variable): Input grid tensor of shape [N, H, W]. The
                        data type is float32 and float64.
        grid(Variable): Input grid tensor of shape [N, C, D, H, W]. The
                        data type is float32 and float64.
        has_offset(bool): Whether to slice with affine offset.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Variable: Output of shape [N, C, H, W]. The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.data(name='x', shape=[None, 3, 101, 60], dtype='float32')
            guide = fluid.data(name='guide', shape=[None, 101, 60], dtype='float32')
            grid = fluid.data(name='grid', shape=[None, 12, 8, 10, 6], dtype='float32')

            # without offset
1378
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=False)
1379

L
LielinJiang 已提交
1380
            # has offset
1381
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=True)
L
LielinJiang 已提交
1382 1383

    """
J
Jiabin Yang 已提交
1384
    if paddle.fluid._non_static_mode():
1385
        attrs = ('has_offset', has_offset)
1386
        return getattr(_legacy_C_ops, "bilateral_slice")(x, grid, guide, *attrs)
L
LielinJiang 已提交
1387 1388

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'bilateral_slice')
1389 1390 1391 1392 1393 1394
    check_variable_and_dtype(
        guide, 'guide', ['float32', 'float64'], 'bilateral_slice'
    )
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'bilateral_slice'
    )
1395
    helper = LayerHelper("bilateral_slice", **locals())
L
LielinJiang 已提交
1396 1397
    out = helper.create_variable_for_type_inference(x.dtype)
    inputs = {'X': x, 'Guide': guide, 'Grid': grid}
1398 1399 1400 1401 1402 1403
    helper.append_op(
        type='bilateral_slice',
        inputs=inputs,
        attrs={'has_offset': has_offset},
        outputs={'Out': out},
    )
L
LielinJiang 已提交
1404
    return out
1405 1406


1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
def correlation(
    x,
    y,
    pad_size,
    kernel_size,
    max_displacement,
    stride1,
    stride2,
    corr_type_multiply=1,
):
1417 1418 1419
    """

    This operation compute correlation of two tensor.
1420 1421
    For more information of correlation, please refer to PWC-Net:
    CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
    <https://arxiv.org/pdf/1709.02371.pdf>_

    Args:
        x(Tensor): The input x is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        y(Tensor): The input y is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        pad_size(int): Pad size. The data type is int.
        max_displacement(int): Max displacement. The data type is int.
        stride1(int): stride size of x. The data type is int.
        stride2(int): stride size of y. The data type is int.
        corr_type_multiply(int, optional): The type of multiply. The data type is int. Default: 1.

    Returns:
        Tensor: The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x1 = fluid.layers.data(name='x1',
                               shape=x_shape,
                               dtype=x_type,
                               append_batch_size=False)
            x2 = fluid.layers.data(name='x2',
                                shape=x_shape,
                                dtype=x_type,
                                append_batch_size=False)


            out = fluid.contrib.correlation(
                            x1,
                            x2,
                            pad_size=4,
                            kernel_size=1,
                            max_displacement=4,
                            stride1=1,
                            stride2=1)

    """

J
Jiabin Yang 已提交
1463
    if paddle.fluid._non_static_mode():
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        attrs = (
            "pad_size",
            pad_size,
            "kernel_size",
            kernel_size,
            "max_displacement",
            max_displacement,
            "stride1",
            stride1,
            "stride2",
            stride2,
            "corr_type_multiply",
            corr_type_multiply,
        )
1478
        output = getattr(_legacy_C_ops, "correlation")(x, y, *attrs)
1479
    else:
1480 1481
        helper = LayerHelper("correlation", **locals())
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        helper.append_op(
            type="correlation",
            inputs={"Input1": x, "Input2": y},
            attrs={
                "pad_size": pad_size,
                "kernel_size": kernel_size,
                "max_displacement": max_displacement,
                "stride1": stride1,
                "stride2": stride2,
                "corr_type_multiply": corr_type_multiply,
            },
            outputs={"Output": output},
        )
1495
    return output
Z
Zhang Ting 已提交
1496 1497


1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
def fused_bn_add_act(
    x,
    y,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    moving_mean_name=None,
    moving_variance_name=None,
    act=None,
    name=None,
):
1510
    r"""
Z
Zhang Ting 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
    This Op performs batch norm on input x, and adds the result to input y. Then
    it performs activation on the sum. The data format of inputs must be NHWC
    `[batch, in_height, in_width, in_channels]`.

    Args:
        x(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        y(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        momentum(float|Tensor, optional): The value used for the moving_mean and
            moving_var computation. This should be a float number or a tensor with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1530 1531 1532
                will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
                If the Initializer of the param_attr is not set, the parameter is initialized
                with Xavier. Default: None.
Z
Zhang Ting 已提交
1533 1534
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
1535 1536 1537
                will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
                If the Initializer of the bias_attr is not set, the bias is initialized zero.
                Default: None.
Z
Zhang Ting 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
            will save global mean with the string.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance.
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
            will save global variance with the string.
        act(string, optional): Activation type, linear|relu|prelu|...
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.

    Examples:
            .. code-block:: python

1551
            import paddle
Z
Zhang Ting 已提交
1552 1553
            import paddle.fluid as fluid

1554 1555
            paddle.enable_static()
            # required: gpu
Z
Zhang Ting 已提交
1556 1557 1558 1559
            def build_program(main_program, startup_program):
                with fluid.program_guard(main_program, startup_program):
                    x = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
                    y = fluid.layers.data(name="y", shape=[1], dtype='int64')
1560
                    conv1_1 = paddle.static.nn.conv2d(
Z
Zhang Ting 已提交
1561 1562 1563 1564 1565 1566 1567 1568
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
1569
                    conv1_2 = paddle.static.nn.conv2d(
Z
Zhang Ting 已提交
1570 1571 1572 1573 1574 1575 1576 1577
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
1578
                    bn = paddle.static.nn.batch_norm(
Z
Zhang Ting 已提交
1579 1580 1581 1582
                        input=conv1_1,
                        act=None,
                        data_layout='NHWC')
                    fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
C
Charles-hit 已提交
1583
                    prediction = paddle.static.nn.fc(x=fused_bn_add_act, size=10, activation='softmax')
1584 1585 1586 1587
                    loss = paddle.nn.functional.cross_entropy(
                        input=prediction, label=y,
                        reduction='none', use_softmax=False
                    )
2
201716010711 已提交
1588
                    loss = paddle.mean(loss)
Z
Zhang Ting 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
                    sgd = fluid.optimizer.SGD(learning_rate=0.001)
                    sgd = fluid.contrib.mixed_precision.decorate(
                        sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
                    sgd.minimize(loss)

                return x, y, loss

            iters = 5
            batch_size = 16
            support_gpu = fluid.is_compiled_with_cuda()
            if support_gpu:
                main_program = fluid.Program()
                startup_program = fluid.Program()
                place = fluid.CUDAPlace(0)
                x, y, loss = build_program(main_program, startup_program)
1604

Z
Zhang Ting 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
                feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
                train_reader = paddle.batch(
                    paddle.dataset.mnist.train(), batch_size=batch_size)
                exe = fluid.Executor(place)
                scope = fluid.Scope()
                with fluid.scope_guard(scope):
                    exe.run(startup_program)
                    for _ in range(iters):
                        data = next(train_reader())
                        loss_v = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])
    """
    helper = LayerHelper('fused_bn_add_act', **locals())

1618 1619 1620 1621 1622 1623
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], 'fused_bn_add_act'
    )
    check_variable_and_dtype(
        y, 'input', ['float16', 'float32', 'float64'], 'fused_bn_add_act'
    )
Z
Zhang Ting 已提交
1624 1625 1626 1627 1628 1629 1630
    bn_param_dtype = core.VarDesc.VarType.FP32

    x_shape = x.shape
    channel_num = x_shape[-1]
    param_shape = [channel_num]

    # create parameter
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        is_bias=True,
    )
    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name, initializer=Constant(0.0), trainable=False
        ),
        shape=param_shape,
        dtype=bn_param_dtype,
    )
Z
Zhang Ting 已提交
1650
    mean.stop_gradient = True
1651 1652 1653 1654 1655 1656 1657 1658 1659
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
        ),
        shape=param_shape,
        dtype=bn_param_dtype,
    )
Z
Zhang Ting 已提交
1660 1661 1662 1663 1664 1665 1666
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
1667 1668 1669
    saved_mean = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True
    )
Z
Zhang Ting 已提交
1670
    saved_variance = helper.create_variable_for_type_inference(
1671 1672
        dtype=bn_param_dtype, stop_gradient=True
    )
Z
Zhang Ting 已提交
1673
    reserve_space = helper.create_variable_for_type_inference(
1674 1675
        dtype=core.VarDesc.VarType.FP16, stop_gradient=True
    )
Z
Zhang Ting 已提交
1676
    batch_norm_out = helper.create_variable_for_type_inference(
1677 1678
        core.VarDesc.VarType.FP16
    )
Z
Zhang Ting 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

    inputs = {
        "X": x,
        "Z": y,
        "Scale": scale,
        "Bias": bias,
    }
    attrs = {"epsilon": epsilon, 'momentum': momentum}

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance,
1694
        "ReserveSpace": reserve_space,
Z
Zhang Ting 已提交
1695 1696
    }

1697 1698 1699 1700 1701 1702
    helper.append_op(
        type="fused_bn_add_activation",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs,
    )
Z
Zhang Ting 已提交
1703 1704

    return batch_norm_out
1705 1706


1707 1708 1709
def pow2_decay_with_linear_warmup(
    warmup_steps, total_steps, base_lr, end_lr, dtype='float32', name=None
):
J
Jiabin Yang 已提交
1710
    if paddle.fluid._non_static_mode():
1711
        raise NotImplementedError(
1712 1713
            "pow2_decay_with_linear_warmup does not support dygraph mode yet."
        )
1714 1715 1716

    helper = LayerHelper("pow2_decay_with_linear_warmup", **locals())
    lr = helper.create_global_variable(persistable=True, dtype=dtype, shape=[1])
Z
Zeng Jinle 已提交
1717
    helper.set_variable_initializer(
1718 1719
        lr, Constant(value=float(base_lr) / warmup_steps)
    )
1720

1721 1722 1723
    step = helper.create_global_variable(
        persistable=True, dtype='int64', shape=[1]
    )
1724
    helper.set_variable_initializer(step, Constant(value=0))
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
    assert (
        warmup_steps <= total_steps
    ), "warmup_steps cannot be larger than total_steps"

    helper.append_op(
        type="pow2_decay_with_linear_warmup",
        inputs={"LearningRate": lr, "Step": step},
        outputs={"LearningRateOut": lr, "StepOut": step},
        attrs={
            "warmup_steps": warmup_steps,
            "total_steps": total_steps,
            "base_lr": base_lr,
            "end_lr": end_lr,
        },
    )
1740
    return lr