operator.cc 136.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
31
#include "paddle/fluid/operators/isfinite_op.h"
32
#include "paddle/fluid/operators/ops_extra_info.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
36
#include "paddle/fluid/platform/profiler/event_tracing.h"
37
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
38
#include "paddle/phi/common/int_array.h"
39
#include "paddle/phi/common/scalar.h"
40
#include "paddle/phi/core/compat/get_kerneltype_forvar_utils.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

64 65 66 67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
68
DECLARE_bool(benchmark);
69
DECLARE_bool(check_nan_inf);
70
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
71
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
72
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
73

Q
Qiao Longfei 已提交
74 75 76
namespace paddle {
namespace framework {

77 78 79 80 81 82
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
83

84
static DDim GetDimsDebug(const Scope& scope,
85
                         const std::string& name,
86
                         bool get_actual_dim = false) {
87
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
88 89
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
90 91
  }

92 93
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
94
    return tensor.dims();
95
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
96
    if (get_actual_dim) {
97
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
98
    } else {
99
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
100
    }
S
Steffy-zxf 已提交
101 102
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
103 104 105 106 107
  } else {
    return DDim({-1});
  }
}

108
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
109 110 111 112 113
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

114
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
115 116 117 118
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
119

120 121
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
122
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return "";
    }
125
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
126 127
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
128 129 130
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
131
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
132
    }
S
Steffy-zxf 已提交
133 134
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
135 136 137 138 139
  } else {
    return "";
  }
}

140
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
141 142 143 144 145 146 147 148 149 150
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

151 152
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
157 158
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
159 160 161 162 163 164 165 166 167 168
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

169
static int GetRowSize(const Scope& scope, const std::string& name) {
170 171 172 173 174
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

175 176
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
177 178 179 180 181
  }

  return -1;
}

182
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

190 191
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
192
    return tensor.lod();
Q
Qiao Longfei 已提交
193 194 195 196 197
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
198 199 200 201 202
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
203
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
210
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
211 212 213 214 215 216
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
RuntimeInferShapeContext::RuntimeInferShapeContext(const OperatorBase& op,
                                                   const RuntimeContext& ctx)
    : op_(op), ctx_(ctx) {}

bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  // has only one input
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end()) {
    return false;
  }
  const auto& in = it->second;
  if (in.size() == 0) return false;
  PADDLE_ENFORCE_EQ(
      in.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input %s should not contain more than one inputs.", name));
  return in[0] != nullptr;
}

bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  // has only one output
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end()) {
    return false;
  }
  const auto& out = it->second;
  if (out.size() == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(
      out.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Output %s should not contain more than one outputs.", name));
  return out[0] != nullptr;
}

bool RuntimeInferShapeContext::HasAttr(const std::string& name) const {
  return op_.HasAttr(name);
}

bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (auto& input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

bool RuntimeInferShapeContext::HasOutputs(const std::string& name,
                                          bool allow_null) const {
  const auto& outs = ctx_.outputs;
  auto it = outs.find(name);
  if (it == outs.end() || it->second.empty()) {
    return false;
  }
  if (!allow_null) {
    for (auto& output : it->second) {
      if (output == nullptr) return false;
    }
  }
  return true;
}

AttrReader RuntimeInferShapeContext::Attrs() const {
  return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
}

std::vector<std::string> RuntimeInferShapeContext::Inputs(
    const std::string& name) const {
  return op_.Inputs(name);
}

std::vector<std::string> RuntimeInferShapeContext::Outputs(
    const std::string& name) const {
  return op_.Outputs(name);
}

std::string RuntimeInferShapeContext::GetInputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->inputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->inputs().size()));
  return op_proto->inputs()[idx].name();
}

std::string RuntimeInferShapeContext::GetOutputNameByIdx(size_t idx) const {
  auto& op_proto =
      paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
  PADDLE_ENFORCE_LT(idx,
                    op_proto->outputs().size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of outputs of "
                        "operator %s, but got index is %d and size is %d",
                        op_.Type(),
                        idx,
                        op_proto->outputs().size()));
  return op_proto->outputs()[idx].name();
}

void RuntimeInferShapeContext::ShareDim(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second[i];
  Variable* out_var = out_it->second[j];

  PADDLE_ENFORCE_EQ(
      in_var->Type(),
      out_var->Type(),
      platform::errors::InvalidArgument(
          "The type of input (%s) and output (%s) are inconsistent.", in, out));

  if (in_var->IsType<phi::SelectedRows>()) {
    auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
    auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
    out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
    out_sele_rows->set_rows(in_sele_rows.rows());
    out_sele_rows->set_height(in_sele_rows.height());
  } else if (in_var->IsType<phi::DenseTensor>()) {
    auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_lod_tensor->Resize(in_lod_tensor.dims());
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Currently, the input type of ShareDim only can be phi::DenseTensor "
        "or SelectedRows."));
  }
}

void RuntimeInferShapeContext::ShareAllLoD(const std::string& in,
                                           const std::string& out) const {
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound(
                        "Input [%s] found error in Op [%s]", in, op_.Type()));
  PADDLE_ENFORCE_NE(out_it,
                    ctx_.outputs.end(),
                    platform::errors::NotFound(
                        "Output [%s] found error in Op [%s]", out, op_.Type()));

  auto& in_var_list = in_it->second;
  auto& out_var_list = out_it->second;

  PADDLE_ENFORCE_EQ(
      in_var_list.size(),
      out_var_list.size(),
      platform::errors::PreconditionNotMet(
          "Op [%s]: Input var size should be equal with output var size",
          op_.Type()));

  auto& out_var_names = op_.Outputs(out);

  for (size_t i = 0; i < in_var_list.size(); ++i) {
    if (out_var_names[i] == framework::kEmptyVarName) {
      continue;
    }

    Variable* in_var = in_var_list[i];
    if (!in_var->IsType<phi::DenseTensor>()) return;
    Variable* out_var = out_var_list[i];
    PADDLE_ENFORCE_EQ(
        out_var->IsType<phi::DenseTensor>(),
        true,
        platform::errors::PreconditionNotMet(
            "The %d-th output of Output(%s) must be phi::DenseTensor.",
            i,
            out_var_names[i]));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
    out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
    if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }
}

void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out,
                                        size_t i,
                                        size_t j) const {
  if (can_skip_lod_) {
    return;
  }
  auto in_it = ctx_.inputs.find(in);
  auto out_it = ctx_.outputs.find(out);
  PADDLE_ENFORCE_NE(in_it,
                    ctx_.inputs.end(),
                    platform::errors::NotFound("Input %s does not exist.", in));
  PADDLE_ENFORCE_NE(
      out_it,
      ctx_.outputs.end(),
      platform::errors::NotFound("Output %s does not exist.", out));
  PADDLE_ENFORCE_LT(i,
                    in_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of input dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        in_it->second.size(),
                        i));
  PADDLE_ENFORCE_LT(j,
                    out_it->second.size(),
                    platform::errors::InvalidArgument(
                        "The index of output dimension is out of range, "
                        "excepted index less than %zu, but received %zu.",
                        out_it->second.size(),
                        j));

  Variable* in_var = in_it->second.at(i);
  if (!in_var->IsType<phi::DenseTensor>()) return;
  Variable* out_var = out_it->second.at(j);
  PADDLE_ENFORCE_EQ(
      out_var->IsType<phi::DenseTensor>(),
      true,
      platform::errors::InvalidArgument(
          "The %zu-th output of Output(%s) must be phi::DenseTensor.", j, out));
  auto& in_tensor = in_var->Get<phi::DenseTensor>();
  auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
  out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::ONEDNN)
#endif
    out_tensor->set_layout(in_tensor.layout());
}

int32_t RuntimeInferShapeContext::GetLoDLevel(const std::string& in,
                                              size_t i) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

void RuntimeInferShapeContext::SetLoDLevel(const std::string& out,
                                           int32_t lod_level,
                                           size_t j) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetLoDLevel is only used in compile time. The calculation of "
      "output's actual lod is different among operators so that should be "
      "set in the runtime kernel."));
}

bool RuntimeInferShapeContext::IsRuntime() const { return true; }

bool RuntimeInferShapeContext::IsRunMKLDNNKernel() const {
  try {
    auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
    return ((op_with_kernel.kernel_type()) &&
            (op_with_kernel.kernel_type()->data_layout_ ==
             phi::DataLayout::ONEDNN));
  } catch (std::bad_cast& exp) {
    return false;
  }
}

// TODO(paddle-dev): Can this be template?
paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
RuntimeInferShapeContext::GetInputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
RuntimeInferShapeContext::GetOutputVarPtrs(const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
  res.reserve(vars.size());
  res.insert(res.begin(), vars.begin(), vars.end());
  return res;
}

DDim RuntimeInferShapeContext::GetInputDim(const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument(
          "Input(%s) should hold one element, but now it holds %zu elements.",
          name,
          vars.size()));
  return this->GetDim(vars[0]);
}

std::vector<DDim> RuntimeInferShapeContext::GetInputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = InputVars(name);
  return GetDims(vars);
}

proto::VarType::Type RuntimeInferShapeContext::GetInputVarType(
    const std::string& name) const {
  return GetVarType(InputVars(name).at(0));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetInputsVarType(
    const std::string& name) const {
  return GetVarTypes(InputVars(name));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetOutputsVarType(
    const std::string& name) const {
  return GetVarTypes(OutputVars(name));
}

void RuntimeInferShapeContext::SetOutputDim(const std::string& name,
                                            const DDim& dim) {
  auto& vars = OutputVars(name);
  PADDLE_ENFORCE_EQ(
      vars.size(),
      1UL,
      platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                        "but now it holds %zu elements.",
                                        name,
                                        vars.size()));
  SetDim(vars[0], dim);
}

void RuntimeInferShapeContext::SetOutputsDim(const std::string& name,
                                             const std::vector<DDim>& dims) {
  auto& vars = OutputVars(name);
  SetDims(vars, dims);
}

const phi::ArgumentMappingFn*
RuntimeInferShapeContext::GetPhiArgumentMappingFn() const {
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
}

const phi::KernelSignature*
RuntimeInferShapeContext::GetPhiDefaultKernelSignature() const {
  return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
}

void RuntimeInferShapeContext::SetSkipLoD(bool skip) { can_skip_lod_ = skip; }

P
pangengzheng 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
std::vector<LoD> RuntimeInferShapeContext::GetOutputsLod(
    const std::string& out) const {
  auto out_it = ctx_.outputs.find(out);
  auto& out_var_list = out_it->second;

  std::vector<LoD> ret;
  for (size_t i = 0; i < out_var_list.size(); ++i) {
    Variable* out_var = out_var_list[i];
    if (out_var != nullptr) {
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
      ret.push_back(out_tensor->lod());
    }
  }
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetOutputsDim(
    const std::string& name) const {
  const std::vector<Variable*>& vars = OutputVars(name);
  std::vector<Variable*> vars_res;
  for (auto var : vars) {
    if (var != nullptr) {
      vars_res.push_back(var);
    }
  }
  return GetDims(vars_res);
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
DDim RuntimeInferShapeContext::GetDim(Variable* var) const {
  PADDLE_ENFORCE_NOT_NULL(
      var, platform::errors::InvalidArgument("Input variable is nullptr."));
  if (var->IsType<phi::DenseTensor>()) {
    return var->Get<phi::DenseTensor>().dims();
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
        "Variable's type is %s.",
        ToTypeName(var->Type())));
  }
}

std::vector<DDim> RuntimeInferShapeContext::GetDims(
    const std::vector<Variable*>& vars) const {
  std::vector<DDim> ret;
  ret.reserve(vars.size());
  std::transform(
      vars.begin(), vars.end(), std::back_inserter(ret), [this](Variable* var) {
        return this->GetDim(var);
      });
  return ret;
}

std::vector<DDim> RuntimeInferShapeContext::GetRepeatedDims(
    const std::string& name) const {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "GetRepeatedDims method only ban be used in compile time."));
}

void RuntimeInferShapeContext::SetDim(Variable* var, const DDim& dim) {
  if (var->IsType<phi::DenseTensor>()) {
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
  } else if (var->IsType<phi::SelectedRows>()) {
    var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Variable type error, expect phi::DenseTensor or SelectedRows, but "
        "received "
        "(%s).",
        ToTypeName(var->Type())));
  }
}

void RuntimeInferShapeContext::SetDims(const std::vector<Variable*>& vars,
                                       const std::vector<DDim>& dims) {
  size_t length = vars.size();
  PADDLE_ENFORCE_EQ(length,
                    dims.size(),
                    platform::errors::InvalidArgument(
                        "The number of input variables do not match the "
                        "number of input dimensions, the number of variables "
                        "is %zu, the number of dimensions is %zu.",
                        length,
                        dims.size()));
  for (size_t i = 0; i < length; ++i) {
    if (vars[i] == nullptr) {
      continue;
    }
    SetDim(vars[i], dims[i]);
  }
}

void RuntimeInferShapeContext::SetRepeatedDims(const std::string& name,
                                               const std::vector<DDim>& dims) {
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "SetRepeatedDims method only can be used in compile time."));
}

std::vector<proto::VarType::Type> RuntimeInferShapeContext::GetVarTypes(
    const std::vector<Variable*>& vars) const {
  std::vector<proto::VarType::Type> retv;
  retv.resize(vars.size());
  std::transform(vars.begin(),
                 vars.end(),
                 retv.begin(),
                 std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                           this,
                           std::placeholders::_1));
  return retv;
}

proto::VarType::Type RuntimeInferShapeContext::GetVarType(Variable* var) const {
  return ToVarType(var->Type());
}

const std::vector<Variable*>& RuntimeInferShapeContext::InputVars(
    const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.inputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the input (%s).", op_.Type(), name));
  return it->second;
}

const std::vector<Variable*>& RuntimeInferShapeContext::OutputVars(
    const std::string& name) const {
  auto it = ctx_.outputs.find(name);
  PADDLE_ENFORCE_NE(
      it,
      ctx_.outputs.end(),
      platform::errors::NotFound(
          "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
  return it->second;
}

751
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
752 753 754
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
755
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
756 757 758 759
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
760
#else
761
      auto dev_id = place.device;
P
peizhilin 已提交
762
      platform::SetDeviceId(dev_id);
763 764 765
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
766 767 768 769
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
770
#else
771
      auto dev_id = place.device;
772
      platform::SetXPUDeviceId(dev_id);
773 774 775 776 777 778 779 780
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
781
      auto dev_id = place.device;
782
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
783 784 785 786 787 788 789 790
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
791
      auto dev_id = place.device;
F
fwenguang 已提交
792
      platform::SetMLUDeviceId(dev_id);
793 794 795 796 797 798 799 800
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
801
      phi::DeviceManager::SetDevice(place);
802
#endif
P
peizhilin 已提交
803
    }
P
peizhilin 已提交
804

805
    {
806 807 808
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
809
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
810
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
811 812
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
813 814
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
815
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
816
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
817 818
      RunImpl(scope, place);
    }
819

Z
Zhang Ting 已提交
820
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
821
  } catch (platform::EnforceNotMet& exception) {
822
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
823
    throw std::move(exception);
824 825 826 827 828 829
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
830
  } catch (...) {
831
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
832
    std::rethrow_exception(std::current_exception());
833
  }
834 835
}

836
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
837
  return inputs_.find(name) != inputs_.end();
838 839
}

840
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
841
  auto& ins = Inputs(name);
842
  PADDLE_ENFORCE_LE(
843 844
      ins.size(),
      1UL,
845
      platform::errors::InvalidArgument(
846 847
          "Operator %s's input %s should contain only one variable.",
          type_,
848
          name));
Y
Yu Yang 已提交
849
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
850 851
}

Y
Yu Yang 已提交
852 853
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
854
  auto it = inputs_.find(name);
855
  PADDLE_ENFORCE_NE(
856 857 858 859
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
860
  return it->second;
Y
Yan Chunwei 已提交
861 862
}

863
bool OperatorBase::HasOutputs(const std::string& name) const {
864
  if (outputs_.find(name) != outputs_.end()) {
865 866 867 868 869 870
    return true;
  } else {
    return false;
  }
}

871
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
872
  auto& outs = Outputs(name);
873
  PADDLE_ENFORCE_LE(
874 875
      outs.size(),
      1UL,
876
      platform::errors::InvalidArgument(
877 878
          "Operator %s's output %s should contain only one variable.",
          type_,
879
          name));
Y
Yu Yang 已提交
880
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
881 882
}

Y
Yu Yang 已提交
883 884
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
885
  auto it = outputs_.find(name);
886
  PADDLE_ENFORCE_NE(
887 888
      it,
      outputs_.end(),
889 890
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
891
  return it->second;
Y
Yan Chunwei 已提交
892 893
}

894
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
895
  std::stringstream ss;
Y
Yu Yang 已提交
896
  ss << "Op(" << type_ << "), inputs:{";
897

898
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
899 900
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
901 902
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
903 904
  }

Y
Yu Yang 已提交
905 906
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
907 908
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
909 910
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
911 912
      auto var_name = input.second[i];
      ss << var_name;
913
      if (scope) {
Q
Qiao Longfei 已提交
914 915 916 917 918 919 920
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
921 922 923
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
924 925 926
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
927
          ss << ":" << dtype;
928 929
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
930
          ss << "(" << place << ")";
931
        }
932
      }
Y
Yu Yang 已提交
933 934 935
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
936
    }
Y
Yu Yang 已提交
937
    ss << "]";
Y
Yu Yang 已提交
938 939
    ++it;
    if (it != inputs_.end()) {
940 941
      ss << ", ";
    }
Q
Qiao Longfei 已提交
942
  }
Y
Yu Yang 已提交
943
  ss << "}, outputs:{";
Y
Yu Yang 已提交
944 945
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
946 947
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
948 949
      auto var_name = output.second[i];
      ss << var_name;
950
      if (scope) {
Q
Qiao Longfei 已提交
951 952 953 954 955 956 957
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
958 959
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
960 961
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
962
          ss << "(" << GetPlace(*scope, var_name) << ")";
963
        }
964
      }
Y
Yu Yang 已提交
965 966 967
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
968
    }
Y
Yu Yang 已提交
969
    ss << "]";
Y
Yu Yang 已提交
970 971
    ++it;
    if (it != outputs_.end()) {
972 973
      ss << ", ";
    }
Q
Qiao Longfei 已提交
974
  }
Y
Yu Yang 已提交
975
  ss << "}.";
Q
Qiao Longfei 已提交
976 977 978
  return ss.str();
}

Y
Yu Yang 已提交
979
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
980 981
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
982
                           const AttributeMap& attrs)
S
sneaxiy 已提交
983 984 985 986 987 988
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
989 990 991 992 993 994 995 996
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
997 998 999 1000 1001

  // canonicalize attrs
  if (info_ && info_->proto_) {
    CanonicalizeScalarAttrs(*info_->proto_, &attrs_);
  }
1002
  // In OperatorBase level, all attributes with VarDesc type will be considered
1003 1004 1005 1006 1007 1008
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
1009
}
1010

Q
qijun 已提交
1011 1012
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
1013
  for (auto& o : inputs_) {
Q
qijun 已提交
1014 1015 1016 1017 1018 1019
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
1030
  auto& info = Info();
Y
Yu Yang 已提交
1031 1032

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
1033
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
1043 1044
}

1045
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
1046
  if (info_ == nullptr || info_->proto_ == nullptr) return;
1047

S
sneaxiy 已提交
1048
  for (auto& in : info_->Proto().inputs()) {
1049
    if (!in.dispensable() && !in.extra()) {
1050
      PADDLE_ENFORCE_NE(
1051 1052 1053 1054
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
1055
    }
1056 1057
  }

S
sneaxiy 已提交
1058
  for (auto& out : info_->Proto().outputs()) {
1059
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
1060
      PADDLE_ENFORCE_NE(
1061 1062 1063 1064
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
1065
    }
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
1081

1082 1083
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
1084 1085
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
1086 1087
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
1088
  } else {
1089
    PADDLE_THROW(platform::errors::InvalidArgument(
1090
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1091
        ToTypeName(var.Type())));
Q
QI JUN 已提交
1092 1093 1094
  }
}

1095
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
1096 1097
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
1098 1099
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
1100
  } else {
1101
    PADDLE_THROW(platform::errors::InvalidArgument(
1102
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
1103
        ToTypeName(var->Type())));
Q
QI JUN 已提交
1104 1105 1106
  }
}

1107 1108 1109 1110 1111 1112 1113 1114
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

1115
bool ExecutionContext::HasInput(const std::string& name) const {
1116
  auto* var = InputVar(name);
1117 1118 1119
  return var != nullptr;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

1134
bool ExecutionContext::HasOutput(const std::string& name) const {
1135
  auto* var = OutputVar(name);
1136 1137 1138
  return var != nullptr;
}

X
Xin Pan 已提交
1139
const Variable* ExecutionContext::InputVar(const std::string& name) const {
1140 1141
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
1142 1143 1144
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

1145
  PADDLE_ENFORCE_LE(
1146 1147
      it->second.size(),
      1UL,
1148
      platform::errors::InvalidArgument(
1149
          "Operator %s's input %s should contain only one variable.",
1150 1151
          op_.Type(),
          name));
X
Xin Pan 已提交
1152 1153 1154
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
1155
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
1156 1157 1158
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

1159
  PADDLE_ENFORCE_LE(
1160 1161
      it->second.size(),
      1UL,
1162 1163
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
1164 1165
          op_.Type(),
          name));
X
Xin Pan 已提交
1166 1167 1168
  return it->second.empty() ? nullptr : it->second[0];
}

1169
template <>
1170 1171
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
1172 1173
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
1174 1175
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
1176 1177
    return {};
  }
1178
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
1179
  res.reserve(vars.size());
1180 1181 1182
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1183
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
1184
                   if (var == nullptr) return nullptr;
1185 1186 1187 1188 1189 1190 1191 1192
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
1193 1194 1195 1196
                 });
  return res;
}

1197
template <>
1198
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
1199
    const std::string& name) const {
H
hong 已提交
1200 1201 1202
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
1203 1204
    return {};
  }
1205
  std::vector<phi::DenseTensor*> res;
1206
  res.reserve(vars.size());
1207 1208 1209
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
1210
                 [&](Variable* var) -> phi::DenseTensor* {
1211
                   return var == nullptr ? nullptr
1212
                                         : var->GetMutable<phi::DenseTensor>();
1213
                 });
1214 1215 1216
  return res;
}

Y
Yu Yang 已提交
1217
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
1218
  // check in new Function kernel first
1219
  bool has_phi_kernel = false;
1220
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
1221
  auto kernel_key_map =
1222
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
1223
  for (auto& kernel : kernel_key_map) {
1224
    has_phi_kernel = true;
1225
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
1226 1227 1228 1229
      return true;
    }
  }

Y
Yu Yang 已提交
1230 1231
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
1245 1246 1247
      return true;
    }
  }
H
hong 已提交
1248

Y
Yu Yang 已提交
1249 1250 1251
  return false;
}

1252
struct OperatorWithKernel::CacheImpl {
1253
  static const char kNotAllowInferShapeCahce[];
1254
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1255 1256 1257 1258 1259 1260 1261
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1262 1263 1264 1265 1266 1267

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1292 1293 1294
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1295 1296 1297
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1298
};
1299 1300
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1301

1302 1303
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1304
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1305 1306 1307
  if (tensor.memory_size() == 0) {
    return;
  }
1308 1309
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1310 1311
    return;
  }
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1324 1325
}

1326 1327 1328 1329
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1330 1331
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1344 1345
          op_kernels.begin(),
          op_kernels.end(),
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1357 1358
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1371 1372
          op_kernels.begin(),
          op_kernels.end(),
1373 1374 1375 1376 1377 1378 1379
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1403 1404 1405 1406
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1418
bool OperatorWithKernel::SupportsMKLDNN(const phi::DataType data_type) const {
1419 1420 1421 1422 1423
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1424 1425
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
1426
                           kern_pair.first.dtype() == data_type;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
1442 1443
                   kern_pair.first.data_type_ ==
                       paddle::framework::TransToProtoVarType(data_type);
1444 1445
          });
    }
1446
  }
1447 1448
}

1449
bool OperatorWithKernel::SupportsCUDNN(const phi::DataType data_type) const {
1450 1451
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
1452 1453 1454 1455 1456 1457 1458
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPUDNN &&
                           kern_pair.first.dtype() == data_type;
                  });
1459 1460 1461 1462 1463 1464 1465 1466
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
1467 1468
      proto::VarType::Type fluid_data_type =
          framework::TransToProtoVarType(data_type);
1469 1470 1471
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
1472
          [fluid_data_type](OpKernelMap::const_reference kern_pair) {
1473 1474
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
1475
                   kern_pair.first.data_type_ == fluid_data_type;
1476 1477 1478 1479 1480
          });
    }
  }
}

1481
bool OperatorWithKernel::SupportsKernelType(
1482
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1483 1484
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1485 1486 1487 1488 1489
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1490
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1491
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1492 1493
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1494 1495
  }
#endif
1496 1497 1498 1499 1500

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
1501
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1502
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1503 1504 1505 1506 1507 1508 1509 1510 1511
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1512 1513
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1514 1515 1516
  }
#endif

1517
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1518 1519 1520 1521 1522
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1523
#ifdef PADDLE_WITH_MKLDNN
1524
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1525 1526 1527
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1528
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1529 1530 1531 1532
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1533 1534 1535 1536 1537 1538 1539 1540
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1541
  return kernel_iter != kernels.end();
1542 1543
}

1544
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
1545
                                         phi::DataType data_type) const {
1546
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1547 1548
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1549 1550
}

1551 1552 1553 1554 1555
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
  return this->CanMKLDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1556
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
1557
                                        phi::DataType data_type) const {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
1569
  if (use_cudnn && data_type == phi::DataType::BFLOAT16) {
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1581 1582 1583 1584 1585
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  return this->CanCUDNNBeUsed(ctx, phi::TransToPhiDataType(data_type));
}

1586 1587 1588 1589 1590 1591 1592
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1593
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1594 1595
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1596
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1597
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
template <typename T>
bool HasSameTensorType(phi::TensorBase* phi_tensor, Variable* var) {
  if (phi_tensor == nullptr && var == nullptr) {
    return true;
  } else if (phi_tensor != nullptr && var != nullptr) {
    if (T::classof(phi_tensor) && var->IsType<T>()) {
      return true;
    }
  }
  return false;
}

// TODO(YuanRisheng): We need collect all `need_prepare_phi_data_`
// into this function.
void OperatorWithKernel::CheckWhetherPreparePhiData(
    const VariableNameMap& innames,
    const VariableNameMap& outnames,
    const Scope& scope) const {
  if (run_phi_kernel_ && impl_ != nullptr) {
    const auto& phi_kernel_context = impl_->getKernelContext();
    size_t phi_tensor_index = 0;
    // Check each tensor in KernelContext, if there is a tensor that has
    // different type with variable. The PhiKernelContext need be reconstructed.
    // We use kernel_signature_'s output to retrieve tensor. Because the tensor
    // in phi_kernel_context stored in the order of kernel_signature_'s output.
    if (phi_kernel_context->OutputsSize() >= phi_tensor_index ||
        kernel_signature_ == nullptr) {
      need_prepare_phi_data_ = true;
      return;
    }

    const auto& phi_output_names = kernel_signature_->output_names;
    for (auto& phi_output_name : phi_output_names) {
      const auto& iter = outnames.find(phi_output_name);
      if (iter != outnames.end()) {
        for (auto& var_name : iter->second) {
          auto var_output = scope.FindVar(var_name);
          auto phi_output =
              phi_kernel_context->MutableOutputAt<phi::TensorBase>(
                  phi_tensor_index);
          if (phi_output == nullptr) {
            continue;
          }
          if (!(HasSameTensorType<phi::DenseTensor>(phi_output, var_output) ||
                HasSameTensorType<phi::SparseCooTensor>(phi_output,
                                                        var_output) ||
                HasSameTensorType<framework::Strings>(phi_output,
                                                      var_output))) {
            need_prepare_phi_data_ = true;
          }
          phi_tensor_index++;
        }
      }
    }
  }
}

L
luotao1 已提交
1657 1658
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1659 1660
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1661 1662 1663
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1664
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1665
    all_kernels_must_compute_runtime_shape_ = true;
C
csy0225 已提交
1666
  const Scope* cur_scope = &scope;
1667
  CheckWhetherPreparePhiData(Inputs(), Outputs(), scope);
1668
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1669 1670
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1671 1672
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1673
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1674
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1675
    }
1676
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1677
  } else {
C
csy0225 已提交
1678
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
1679
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
C
csy0225 已提交
1680 1681 1682 1683
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1684
    }
1685
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1686 1687 1688 1689 1690 1691
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1692
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1693
  bool fallback_to_cpu = false;
1694
  auto* dev_ctx = pool.Get(place);
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1706 1707 1708 1709
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
H
HongyuJia 已提交
1710
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1711

1712 1713 1714 1715 1716 1717
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1718 1719 1720 1721 1722
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1723 1724
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1725
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1726
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1727 1728 1729 1730 1731 1732
      if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
        kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
      } else {
        kernel_signature_.reset(new phi::KernelSignature(
            std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      }
1733

1734 1735
      VLOG(6) << *kernel_signature_.get();
      phi_kernel_name = kernel_signature_->name;
1736 1737 1738
      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);
1739 1740 1741 1742 1743 1744 1745
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1746
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1747
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1762
                  << phi_kernel_name
1763
                  << ", using_kernel_key:" << *kernel_type_.get();
1764
          auto try_phi_kernel_key =
1765
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1766 1767
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1768 1769
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1770
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1771 1772 1773
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1774
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1775 1776 1777 1778
          }
        }
      }
#endif
1779 1780
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1781
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1782
              phi_kernel_name, phi_kernel_key)));
1783

1784
      if (phi_kernel_->IsValid()) {
1785
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
1786 1787
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1788
      } else {
1789 1790
        VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `"
                << phi_kernel_name << "` not found.";
1791
      }
1792
    } else {
1793
      phi_kernel_name = kernel_signature_->name;
1794
// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1795
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1796
// values are kPlain, so we need to modify the library_type and data_layout_
1797 1798 1799 1800
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1801
#ifdef PADDLE_WITH_MKLDNN
1802 1803
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1804 1805
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1806
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1807 1808 1809
      }
#endif

1810 1811 1812 1813 1814 1815
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1816 1817 1818
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1819 1820 1821 1822
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
1823
            paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1824
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1838
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1839
                  << phi_kernel_name
1840
                  << ", using_kernel_key:" << *kernel_type_.get();
1841
          auto try_phi_kernel_key =
1842
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1843 1844
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1845
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1846
            VLOG(3) << "modify XPU KP kernel in static graph: "
1847
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1848 1849 1850
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1851
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1852 1853 1854 1855
          }
        }
      }
#endif
1856
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1857
    }
1858 1859 1860 1861

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1862
#if defined(PADDLE_WITH_XPU)
1863 1864
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1865 1866
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1867
#endif
1868 1869 1870 1871
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
1872
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
1873
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1874 1875 1876 1877 1878 1879
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1880 1881 1882 1883 1884 1885
    bool in_custom_back_list = false;
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    in_custom_back_list =
        phi::backends::custom_device::is_in_custom_black_list(phi_kernel_name);
#endif
    if (phi_kernel_->IsValid() && !in_custom_back_list
1886
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1887 1888
        && !is_xpu_unsupport
#endif
1889 1890 1891
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1892
    ) {
1893
      run_phi_kernel_ = true;
1894 1895 1896
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1897 1898 1899 1900 1901 1902 1903 1904 1905

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif
1906 1907 1908
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1909
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1910
          || is_xpu_unsupport
1911
#endif
1912 1913
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
1914 1915 1916
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
          || in_custom_back_list
1917
#endif
1918
      ) {
1919
        fallback_to_cpu = true;
1920 1921 1922
        if (in_custom_back_list) {
          VLOG(3) << "fluid in black list: " << phi_kernel_name;
        }
H
HongyuJia 已提交
1923
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1924
        phi_kernel_.reset(
1925
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1926
                phi_kernel_name, phi_cpu_kernel_key)));
1927 1928

        dev_ctx = pool.Get(platform::CPUPlace());
1929
        if (phi_kernel_->IsValid()) {
1930
          VLOG(6) << "Static graph mode PrepareImpl - kernel name: "
1931 1932
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1933
          run_phi_kernel_ = true;
1934 1935
        }
      }
1936 1937
    }
  }
1938
  if (!run_phi_kernel_) {
1939 1940
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1941
      dev_ctx = pool.Get(kernel_type_->place_);
1942
    }
1943 1944
  }

Y
yuyang18 已提交
1945 1946
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1947 1948
  Scope* transfer_scope = nullptr;
  {
1949
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1950
                                       platform::TracerEventType::OperatorInner,
1951 1952
                                       1,
                                       platform::EventRole::kInnerOp);
1953
    if (need_prepare_data_) {
1954 1955 1956 1957 1958 1959
      transfer_scope =
          PrepareData(scope,
                      framework::TransOpKernelTypeToPhiKernelKey(*kernel_type_),
                      &transfered_inplace_vars,
                      runtime_ctx,
                      dev_ctx->GetPlace());
1960
    }
1961
  }
Y
yuyang18 已提交
1962 1963 1964 1965
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1966
  if (!all_kernels_must_compute_runtime_shape_) {
1967
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1968
                                       platform::TracerEventType::OperatorInner,
1969 1970
                                       1,
                                       platform::EventRole::kInnerOp);
1971
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1972
    this->Info().infer_shape_(&infer_shape_ctx);
1973 1974
    record_event.End();
    platform::RecordOpInfoSupplement(
1975
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1976
  }
1977 1978 1979 1980 1981

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1982 1983
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1984
  {
1985
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1986
                                       platform::TracerEventType::OperatorInner,
1987 1988
                                       1,
                                       platform::EventRole::kInnerOp);
1989 1990
    if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                               phi::KernelRegisteredType::FUNCTION) {
1991
      phi::KernelContext phi_kernel_context;
1992 1993
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
2015
            new CacheImpl(new phi::KernelContext(),
2016 2017 2018
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
2019
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
2020
        (*phi_kernel_)(impl_->getKernelContext());
2021
      } else {
2022
        phi::KernelContext phi_kernel_context;
2023 2024
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
2025 2026
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
2027
      }
2028 2029 2030 2031 2032
    } else if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                                      phi::KernelRegisteredType::STRUCTURE) {
      ExecutionContext execution_context(
          *this, exec_scope, *dev_ctx, *runtime_ctx);
      (*phi_kernel_)(&execution_context);
2033 2034 2035 2036
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
2037 2038 2039
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
2040
  }
D
dzhwinter 已提交
2041

Y
yuyang18 已提交
2042
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
2043
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
2044
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
2045
  }
2046 2047 2048 2049 2050 2051 2052

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

2053 2054 2055 2056 2057 2058 2059 2060
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
2061

D
dzhwinter 已提交
2062
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
2063
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
2064
    dev_ctx->Wait();
2065 2066
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
2067 2068
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
2069
  }
C
chengduoZH 已提交
2070 2071

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
2072
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
2073
  }
2074 2075 2076 2077

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
C
csy0225 已提交
2078 2079
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
2080
  }
Q
Qiao Longfei 已提交
2081
}
X
Xin Pan 已提交
2082

2083 2084
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
2085 2086 2087
  phi::KernelKey phi_kernel_key = this->GetExpectedKernelType(ctx);
  auto expected_kernel_key =
      framework::TransPhiKernelKeyToOpKernelType(phi_kernel_key);
2088 2089 2090

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
2091
// data_layout_ of expected_kernel_key need to be adjusted. There are three
2092
// statements in if condition:
2093 2094 2095
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
2096
#ifdef PADDLE_WITH_MKLDNN
2097
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
2098 2099
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
2100
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
2101 2102 2103
  }
#endif

2104 2105 2106 2107 2108 2109
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

2110 2111 2112
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
2123 2124 2125
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2126 2127
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2128
      if (SupportGPU()) {
2129
        auto& dev_ctx = ctx.device_context();
2130
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2131 2132
      }
#endif
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2152 2153 2154
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2155
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2156 2157 2158
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2159 2160
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2187 2188 2189
      }
    }
  }
2190 2191 2192 2193 2194 2195

  if (platform::places_are_same_class(expected_kernel_key.place_,
                                      ctx.GetPlace())) {
    expected_kernel_key.place_ = ctx.GetPlace();
  }

C
cc 已提交
2196 2197
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2198 2199 2200
  return expected_kernel_key;
}

2201
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2202
    const ExecutionContext& ctx) const {
2203 2204 2205 2206 2207 2208 2209
  std::string phi_kernel_name;
  if (phi::KernelFactory::Instance().HasStructuredKernel(type_)) {
    kernel_signature_.reset(new phi::KernelSignature(type_.c_str()));
  } else {
    kernel_signature_.reset(
        new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  }
2210
  VLOG(6) << *kernel_signature_.get();
2211
  phi_kernel_name = kernel_signature_->name;
2212 2213 2214
  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2215 2216 2217
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2218

2219
  if (phi_kernel_->IsValid()) {
2220 2221
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel name: "
            << phi_kernel_name << " | kernel key: " << phi_kernel_key
2222
            << " | kernel: " << *phi_kernel_;
2223
  } else {
2224
    VLOG(6) << "Static graph mode ChoosePhiKernel - kernel `" << phi_kernel_name
2225 2226
            << "` not found.";
  }
2227
  return phi_kernel_key;
2228 2229 2230 2231 2232 2233 2234
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2235 2236
      kernels_iter,
      all_op_kernels.end(),
2237
      platform::errors::Unimplemented(
2238 2239 2240 2241 2242 2243
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2244 2245

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2246

L
Liu Yiqun 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2256
#endif
2257 2258

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2259
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2260
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2261 2262 2263
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2264
    VLOG(3) << "fluid missing XPU kernel: " << type_
2265 2266 2267 2268 2269
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2270
#endif
L
Liu-xiandong 已提交
2271 2272

#ifdef PADDLE_WITH_XPU_KP
2273 2274 2275
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
2276
        paddle::platform::is_xpu_kp_support_op(
Q
QingshuChen 已提交
2277 2278
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2279 2280 2281
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2282
      VLOG(3) << "fluid xpu_kp using rt mode ";
2283 2284
    }
    if (use_xpu_kp_kernel_debug) {
2285
      VLOG(3) << "fluid xpu_kp using debug mode ";
2286 2287 2288
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2289 2290
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2291 2292
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2293
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2294
      // if the fluid do not register related kernel, it can't work and have
2295 2296 2297 2298 2299 2300 2301
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2302
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2303 2304
                << ", using_kernel_key:" << expected_kernel_key;
      }
2305
    }
Q
QingshuChen 已提交
2306 2307
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2308 2309
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2310
      VLOG(3) << "fluid missing XPU kernel: " << type_
2311 2312 2313 2314 2315
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2316 2317 2318
  }
#endif

A
Allen Guo 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2329 2330
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2331
      platform::is_npu_place(expected_kernel_key.place_)) {
2332 2333 2334 2335 2336 2337
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2338 2339 2340
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2341
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2342 2343 2344
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2356 2357 2358
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2359
#endif
2360 2361 2362 2363 2364 2365
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2366

2367 2368 2369 2370 2371
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2372 2373
}

Y
yuyang18 已提交
2374
void OperatorWithKernel::TransferInplaceVarsBack(
2375 2376
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2377 2378
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2379
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2380
    auto* origin_var = scope.FindVar(var_name);
2381 2382 2383
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2384
    auto* original_tensor =
C
chengduo 已提交
2385
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2386
    auto* var = transfer_scope.FindVar(var_name);
2387 2388 2389
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2390
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2391
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2392
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2393 2394 2395 2396 2397
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2398 2399 2400
  }
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2430
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2450
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2461
      phi::DenseTensor out;
2462 2463 2464 2465 2466 2467
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2468
Scope* OperatorWithKernel::PrepareData(
2469
    const Scope& scope,
2470
    const phi::KernelKey& expected_kernel_key,
X
Xin Pan 已提交
2471
    std::vector<std::string>* transfered_inplace_vars,
2472 2473
    RuntimeContext* ctx,
    const phi::Place& place) const {
Y
yuyang18 已提交
2474
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2475

2476
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2477 2478 2479 2480
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2481 2482
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2483 2484 2485
    }
  }

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
  auto has_infer_varkernel_fn =
      (run_phi_kernel_ && phi_kernel_->get_kerneltype_forvar_fn_ != nullptr);
  phi::AttributeMap infer_attrs{};
  auto fluid_attrs = Attrs();
  phi::GetKernelTypeForVarContext infer_varkernel_context =
      BuildGetKernelTypeForVarContext(expected_kernel_key,
                                      fluid_attrs,
                                      &infer_attrs,
                                      has_infer_varkernel_fn);

2496 2497 2498 2499 2500 2501 2502 2503 2504
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2505

Y
yuyang18 已提交
2506
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2507
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2508 2509 2510
        continue;
      }

C
chengduo 已提交
2511
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2512

2513
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2514 2515 2516 2517 2518 2519 2520
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2521
        // oneDNN shape of Var may differ from kNHWC Var
2522 2523
        // In such situation corressponding resized Var
        // has to be created and registered
2524
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2525
            (var->IsType<phi::DenseTensor>() == true) &&
2526
            (expected_kernel_key.layout() != DataLayout::ONEDNN) &&
2527 2528
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2529
            (tensor_in->dims().size() >= 3)) {
2530
          // Mixed execution : oneDNN and GPU is not supported!
2531 2532 2533 2534
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2535
          in_vars->at(i) = trans_var;
2536
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2537
          out->Resize(tensor_in->dims());
2538
          phi::funcs::MatchShapeToLayout(
2539
              out, tensor_in->layout(), DataLayout::kNHWC);
2540
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2541
                     "phi::DenseTensor , "
2542
                     "but kNHWC layout"
2543
                  << in_name << " in Operator " << type_;
2544
        } else {
2545 2546
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2547 2548 2549 2550 2551
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2552 2553 2554 2555
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2556 2557
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
2558 2559 2560 2561 2562 2563 2564
      if (has_infer_varkernel_fn) {
        infer_varkernel_context.SetVarName(const_cast<std::string*>(&in_name));
        infer_varkernel_context.SetDenseTensor(
            const_cast<phi::DenseTensor*>(tensor_in));
        kernel_type_for_var =
            phi_kernel_->get_kerneltype_forvar_fn_(&infer_varkernel_context);
      }
2565
      bool need_trans_dtype =
2566
          NeedTransformDataType(expected_kernel_key, kernel_type_for_var);
2567
      bool need_trans_layout = NeedTransformLayout(
2568
          kernel_type_for_var.layout(), expected_kernel_key.layout());
2569 2570
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
2571 2572
            backends_are_same_class(kernel_type_for_var.backend(),
                                    expected_kernel_key.backend())) {
2573 2574 2575
          continue;
        }
      }
Y
yuyang18 已提交
2576

2577
      std::unique_ptr<phi::KernelKey> new_expected_kernel_key = nullptr;
2578 2579
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2580 2581
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
2582 2583 2584 2585 2586 2587
             !(in_def->backend == phi::Backend::GPUDNN &&
               tensor_backend == phi::Backend::GPU) &&
             !(in_def->backend == phi::Backend::KPS &&
               tensor_backend == phi::Backend::XPU) &&
             !(in_def->backend == phi::Backend::ONEDNN &&
               tensor_backend == phi::Backend::CPU)) ||
2588
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
2589 2590 2591 2592
          new_expected_kernel_key =
              std::make_unique<phi::KernelKey>(in_def->backend,
                                               expected_kernel_key.layout(),
                                               expected_kernel_key.dtype());
2593 2594 2595 2596 2597 2598 2599
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2600 2601
      }

M
minqiyang 已提交
2602
      VLOG(3) << "Transform Variable " << var_name << " from "
2603 2604 2605
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2606

H
HongyuJia 已提交
2607 2608 2609
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2610
      // We use a thread_local cache to fix that issue, the key in the cache is
2611 2612 2613 2614 2615
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2616 2617
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2618
      // variables, that behavior a lot different.
2619 2620 2621 2622 2623 2624
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2625 2626
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
2627 2628 2629 2630
          if (kernel_type_for_var.backend() == phi::Backend::GPU ||
              kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
              new_expected_kernel_key->backend() == phi::Backend::GPU ||
              new_expected_kernel_key->backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2631
            new_scope = TryCreateTransferScope(
2632 2633 2634
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
2635 2636 2637 2638
        } else if (kernel_type_for_var.backend() == phi::Backend::GPU ||
                   kernel_type_for_var.backend() == phi::Backend::GPUDNN ||
                   expected_kernel_key.backend() == phi::Backend::GPU ||
                   expected_kernel_key.backend() == phi::Backend::GPUDNN) {
C
csy0225 已提交
2639
          new_scope = TryCreateTransferScope(
2640 2641 2642
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2643
      }
2644

2645
      if (!new_scope) {
Y
yuyang18 已提交
2646 2647
        new_scope = &scope.NewScope();
      }
C
csy0225 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2658 2659

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2660
      auto* trans_var = new_scope->Var(var_name);
2661
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2662 2663 2664 2665 2666 2667 2668

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2669
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2679
      phi::DenseTensor out;
2680 2681 2682 2683 2684 2685 2686 2687 2688
      TransformData(
          new_expected_kernel_key ? *new_expected_kernel_key
                                  : expected_kernel_key,
          kernel_type_for_var,
          *tensor_in,
          &out,
          new_expected_kernel_key
              ? phi::TransToPhiPlace(new_expected_kernel_key->backend())
              : place);
Y
yuyang18 已提交
2689 2690
      SetTensorToVariable(*var, out, trans_var);
    }
2691 2692
  };

2693 2694
  if (run_phi_kernel_ && phi_kernel_->GetKernelRegisteredType() ==
                             phi::KernelRegisteredType::FUNCTION) {
2695
    const auto& input_names = kernel_signature_->input_names;
2696
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
2713 2714 2715 2716 2717 2718 2719 2720 2721

      phi::TensorArgDef in_def = input_defs.at(i);
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      // When the backend of input tensor arg_def is CUSTOM, we need to set it
      // to the actual backend by expected_kernel_key.
      if (in_def.backend == phi::Backend::CUSTOM) {
        in_def.SetBackend(expected_kernel_key.backend());
      }
#endif
2722 2723
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2740 2741 2742 2743 2744 2745 2746 2747 2748
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2749
  }
L
Leo Chen 已提交
2750

C
csy0225 已提交
2751 2752 2753 2754
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
2755 2756
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
C
csy0225 已提交
2757

W
wenbin 已提交
2758 2759 2760 2761
  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
C
csy0225 已提交
2762
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2763 2764
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2765 2766 2767

  return new_scope;
}
Q
Qiao Longfei 已提交
2768

2769
void OperatorWithKernel::ParseInputDataType(
2770 2771
    const Variable* var,
    const std::string& name,
2772 2773
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2774 2775 2776
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2777 2778
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2779 2780
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2807 2808
    const std::vector<Variable*>& vars,
    const std::string& name,
2809
    proto::VarType::Type* data_type) const {
2810
  proto::VarType::Type default_data_type =
2811 2812 2813 2814
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2815 2816 2817
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2818 2819
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2843
      } else if (var->IsType<LoDTensorArray>()) {
2844 2845 2846 2847
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2848 2849
          }
        }
2850 2851
      }
      if (t != nullptr) {
2852 2853 2854 2855 2856 2857 2858
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2859 2860
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2861 2862 2863 2864 2865 2866 2867
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2868 2869 2870
                           Type(),
                           name,
                           DataTypeToString(tmp),
2871
                           DataTypeToString(*data_type)));
2872 2873 2874 2875 2876 2877
        *data_type = tmp;
      }
    }
  }
}

2878
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2879
    const ExecutionContext& ctx) const {
2880 2881 2882
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2883

2884
  for (auto* name : ctx.InNameList()) {
2885 2886 2887 2888 2889
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2890
  }
2891
  PADDLE_ENFORCE_NE(
2892 2893
      data_type,
      dafault_data_type,
2894 2895
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2896 2897 2898 2899 2900 2901 2902 2903
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2904 2905 2906 2907 2908
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2909
  PADDLE_ENFORCE_NE(
2910 2911
      data_type,
      dafault_data_type,
2912 2913
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2914
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2915
          "LoDTensorArray.",
2916 2917
          name,
          Type()));
2918
  return data_type;
Y
Yu Yang 已提交
2919
}
2920

2921
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2934 2935 2936
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2937 2938
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2939 2940 2941 2942
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2943 2944 2945 2946 2947 2948 2949
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2950
      platform::errors::InvalidArgument(
2951 2952 2953 2954 2955
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2967 2968
    const ExecutionContext& ctx,
    const std::string& name1,
2969 2970 2971 2972 2973 2974
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2975 2976
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2977 2978 2979 2980 2981 2982 2983

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2984
phi::KernelKey OperatorWithKernel::GetExpectedKernelType(
2985
    const ExecutionContext& ctx) const {
2986
  return phi::KernelKey(IndicateDataType(ctx), ctx.GetPlace());
2987 2988
}

2989
phi::KernelKey OperatorWithKernel::GetKernelTypeForVar(
2990
    const std::string& var_name,
2991
    const phi::DenseTensor& tensor,
2992
    const phi::KernelKey& expected_kernel_type) const {
2993 2994 2995 2996
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2997
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
2998
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2999 3000
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
3001 3002
    return phi::KernelKey(
        tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
3003 3004
  }
#endif
3005 3006
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
3007 3008
}

3009
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
3010
    const ExecutionContext& ctx) const {
3011
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
3012
  if (arg_map_fn_ == nullptr) {
3013 3014 3015 3016
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
3017 3018 3019
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
3020 3021 3022 3023
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
3024 3025
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

3087
void OperatorWithKernel::BuildPhiKernelContext(
3088 3089
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
3090 3091
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
3092

3093 3094 3095
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
3096

3097 3098 3099
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

3110 3111
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
3112 3113 3114
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
3115 3116
                        input_names.size(),
                        input_defs.size()));
3117

3118 3119
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
3120 3121 3122
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
3123 3124
                        output_names.size(),
                        output_defs.size()));
3125

3126 3127
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
3128 3129 3130
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
3131 3132
                        attr_names.size(),
                        attr_defs.size()));
3133
  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
3134
    auto it = ctx.inputs.find(input_names[i]);
3135 3136 3137

    // calcute the start and end index of the input tensors
    size_t start_idx =
3138
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
3139
    // deal with optional here
3140
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
3141
        (input_defs[i].type_index ==
3142
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
3143
         input_defs[i].type_index ==
3144
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
3145
         input_defs[i].type_index ==
3146 3147
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
3148
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
3149
      auto end_idx = start_idx + 1;
3150 3151
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
3152

H
hong 已提交
3153 3154 3155 3156
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
3157
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
3158
      const phi::TensorBase* tensor_in = nullptr;
3159
      auto* var = ins_vector[offset];
3160 3161
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3162
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3163 3164
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3165
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3166 3167 3168
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3169
      } else if (var->IsType<framework::LoDTensorArray>()) {
3170
        need_prepare_phi_data_ = true;
3171 3172
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3173 3174 3175
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3176 3177 3178
      } else if (var->IsType<framework::FeedList>()) {
        tensor_in = &(var->Get<framework::FeedList>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3179 3180 3181 3182
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3183
      }
3184
    }
3185
    // Note: here cannot deal with vector<LoDTensorArray> input
3186
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3187
  }
3188
  VLOG(4) << "Done inputs";
3189
  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3190
    auto it = ctx.outputs.find(output_names[i]);
3191
    size_t start_idx =
3192
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3193 3194

    if (it == ctx.outputs.end() || it->second.empty()) {
3195
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3196 3197 3198 3199
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3200
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3201
      auto end_idx = start_idx + 1;
3202 3203
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3204 3205 3206 3207
      continue;
    }
    auto& outs_vector = it->second;

3208
    size_t end_idx = start_idx + outs_vector.size();
3209 3210

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3211
      phi::TensorBase* tensor_out = nullptr;
3212
      auto* var = outs_vector[offset];
3213
      if (var) {
3214 3215
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3216
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3217 3218
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3219
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3220 3221 3222
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3223
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3224
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3225 3226
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3227
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3228 3229 3230
        } else if (var->template IsType<framework::Strings>()) {
          tensor_out = var->template GetMutable<framework::Strings>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3231 3232 3233 3234 3235 3236 3237
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3238 3239 3240 3241 3242
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3243
      } else {
3244
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3245
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3246
      }
3247
    }
3248 3249
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3250
  }
3251
  VLOG(4) << "Done outputs";
3252
  for (size_t i = 0; i < attr_names.size(); ++i) {
3253 3254
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3255 3256
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3257 3258 3259 3260 3261 3262 3263
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3264
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3265
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3266
              break;
3267 3268 3269 3270
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3271
            case proto::AttrType::INT:
3272
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3273
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3274
              break;
3275 3276 3277 3278
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3279
            case proto::AttrType::STRING:
3280
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3281
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3282
              break;
3283 3284 3285 3286
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3287 3288 3289 3290 3291
            case proto::AttrType::SCALAR:
              phi_kernel_context->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(
                      paddle::experimental::Scalar, attr_iter->second))));
              break;
3292 3293 3294 3295 3296 3297 3298
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3299
          need_prepare_phi_data_ = true;
3300
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3301 3302
          phi_kernel_context->EmplaceBackAttr(
              std::move(framework::MakePhiScalarFromVar(*ins_vector.front())));
3303
        }
3304 3305 3306 3307 3308
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3309
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3310
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3311 3312
              break;
            case proto::AttrType::LONGS:
3313
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3314
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3315 3316
              break;
            case proto::AttrType::INT:
3317
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3318
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3319 3320
              break;
            case proto::AttrType::LONG:
3321
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3322
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3323 3324 3325 3326 3327 3328 3329 3330
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3331
          need_prepare_phi_data_ = true;
3332 3333
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3334
            phi_kernel_context->EmplaceBackAttr(std::move(
3335
                framework::MakePhiIntArrayFromVar(*ins_vector.front())));
3336
          } else {  // ShapeTensorList
3337 3338
            phi_kernel_context->EmplaceBackAttr(
                std::move(framework::MakePhiIntArrayFromVarList(ins_vector)));
3339
          }
3340
        }
3341
        break;
3342

3343 3344
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3345 3346
            attr_iter,
            Attrs().end(),
3347 3348 3349 3350 3351 3352
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3353
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3354 3355 3356 3357 3358
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3359
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3360 3361 3362
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3363
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3364 3365 3366 3367 3368
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3369
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3370 3371 3372
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3373
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3374 3375 3376 3377 3378
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3379
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3380 3381 3382
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3383
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3384 3385 3386 3387 3388
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3389
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3390 3391 3392
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3393
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3394 3395 3396 3397 3398
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3399
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3400
          } break;
3401 3402 3403 3404 3405 3406
          case proto::AttrType::SCALARS: {
            const auto& vec = PADDLE_GET_CONST(
                std::vector<paddle::experimental::Scalar>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list{vec.begin(), vec.end()};
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
3407 3408 3409 3410
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3411 3412
                attr_names[i]));
        }
3413 3414
      } break;
      default: {
3415
        if (attr_iter == Attrs().end()) {
3416
          // TODO(chenweihang): remove this backup searching later
3417 3418 3419 3420 3421 3422 3423 3424 3425
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3426 3427
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3428
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3429
                PADDLE_GET_CONST(float, attr_iter->second));
3430
            break;
3431 3432 3433 3434
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3435
          case phi::AttributeType::INT32:
3436
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3437
                PADDLE_GET_CONST(int, attr_iter->second));
3438 3439
            break;
          case phi::AttributeType::BOOL:
3440
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3441
                PADDLE_GET_CONST(bool, attr_iter->second));
3442 3443
            break;
          case phi::AttributeType::INT64:
3444
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3445
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3446 3447
            break;
          case phi::AttributeType::INT32S:
3448
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3449
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3450
            break;
3451 3452 3453 3454
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3455 3456 3457
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3458
                    PADDLE_GET_CONST(int, attr_iter->second)));
3459
            phi_kernel_context->EmplaceBackAttr(data_type);
3460 3461
          } break;
          case phi::AttributeType::STRING:
3462
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3463
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3464 3465 3466 3467
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3468
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3469
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3470 3471 3472
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3473
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3474 3475
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3476
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3487
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3488
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3489 3490
            break;
          case phi::AttributeType::STRINGS:
3491
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3492
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3493 3494 3495 3496 3497 3498
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3499
        }
3500 3501 3502
      }
    }
  }
3503
  VLOG(4) << "Done attributes";
3504

3505 3506 3507 3508 3509 3510
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3511
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3529 3530 3531 3532 3533 3534
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3535
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3536 3537 3538 3539 3540 3541
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
S
Shuangchi He 已提交
3542
  // which increases the cost of development and understanding, so we
3543 3544 3545 3546 3547 3548 3549
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3550
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3585 3586
}

Q
Qiao Longfei 已提交
3587
}  // namespace framework
L
liaogang 已提交
3588
}  // namespace paddle