convolution.h 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/ddim.h"
18
#include "paddle/phi/core/tensor_utils.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {
namespace funcs {
namespace sparse {

struct Dims4D {
  int dims[4];
  Dims4D(const int batch, const int x, const int y, const int z) {
    dims[0] = batch;
    dims[1] = z;
    dims[2] = y;
    dims[3] = x;
  }
  HOSTDEVICE const int& operator[](int i) const { return dims[i]; }
};

// Judge whether the current position x is in (lower, upper)
37 38
template <typename IntT = int>
inline HOSTDEVICE bool Check(const IntT& x,
39 40 41 42 43 44
                             const int& kx,
                             const int& pad,
                             const int& stride,
                             const int dilation,
                             const int kdim,
                             const int xdim) {
45 46
  const IntT lower = x - dilation * kx + pad;
  const IntT uper = x + (kdim - kx - 1) * dilation - pad;
47 48 49 50 51
  return (lower >= 0 && lower % stride == 0 && uper < xdim);
}

// Check whether the current position(x, y, z) is legal:
// Judge the minimum and maximum values at each latitude
52
template <typename IntT = int>
53 54 55 56 57
inline HOSTDEVICE bool Check(const Dims4D& dims,
                             const Dims4D& kernel_dims,
                             const Dims4D& paddings,
                             const Dims4D& dilations,
                             const Dims4D& strides,
58 59 60
                             const IntT x,
                             const IntT y,
                             const IntT z,
61 62 63 64 65 66 67 68 69 70 71 72
                             const int kx,
                             const int ky,
                             const int kz) {
  bool x_valid = Check(
      x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]);
  bool y_valid = Check(
      y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]);
  bool z_valid = Check(
      z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]);
  return (x_valid && y_valid && z_valid);
}

73 74 75 76 77 78
template <typename Dim, typename IntT = int>
inline HOSTDEVICE IntT PointToIndex(const IntT& batch,
                                    const IntT& x,
                                    const IntT& y,
                                    const IntT& z,
                                    const Dim& dims) {
79 80 81 82 83 84
  return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] +
         y * dims[3] + x;
}

// TODO(zhangkaihuo): use division and multiply to optimize
// modulo operation
85
template <typename Dim, typename IntT = int>
86
inline HOSTDEVICE void IndexToPoint(
87 88
    const IntT index, const Dim& dims, IntT* batch, IntT* x, IntT* y, IntT* z) {
  IntT n = index;
89 90 91 92 93 94 95 96 97 98
  *x = n % dims[3];
  n /= dims[3];
  *y = n % dims[2];
  n /= dims[2];
  *z = n % dims[1];
  n /= dims[1];
  *batch = n;
}

inline void GetOutShape(const DDim& x_dims,
Z
zhangkaihuo 已提交
99
                        const std::vector<int>& kernel_sizes,
100 101 102 103
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        DDim* out_dims) {
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  const bool is2D = out_dims->size() == 4 ? true : false;
  if (is2D) {
    PADDLE_ENFORCE_EQ(
        x_dims.size(),
        4,
        phi::errors::InvalidArgument("the shape of x should be (N, H, W, C)"));
    PADDLE_ENFORCE_EQ(kernel_sizes.size(),
                      4,
                      phi::errors::InvalidArgument(
                          "the shape of kernel should be (H, W, C, OC)"));

    // infer out shape
    (*out_dims)[0] = x_dims[0];
    (*out_dims)[3] = kernel_sizes[3];
    for (int i = 1; i < 3; i++) {
      (*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
                        dilations[i - 1] * (kernel_sizes[i - 1] - 1) - 1) /
                           strides[i - 1] +
                       1;
    }
  } else {
    PADDLE_ENFORCE_EQ(x_dims.size(),
                      5,
                      phi::errors::InvalidArgument(
                          "the shape of x should be (N, D, H, W, C)"));
    PADDLE_ENFORCE_EQ(kernel_sizes.size(),
                      5,
                      phi::errors::InvalidArgument(
                          "the shape of kernel should be (D, H, W, C, OC)"));

    // infer out shape
    (*out_dims)[0] = x_dims[0];
    (*out_dims)[4] = kernel_sizes[4];
    for (int i = 1; i < 4; i++) {
      (*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
                        dilations[i - 1] * (kernel_sizes[i - 1] - 1) - 1) /
                           strides[i - 1] +
                       1;
    }
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  }
}

inline void ResetSubmKernelSizeAndStrides(const DDim& kernel_dims,
                                          std::vector<int>* paddings,
                                          std::vector<int>* strides) {
  for (uint64_t i = 0; i < paddings->size(); i++) {
    (*paddings)[i] = kernel_dims[i] / 2;
    (*strides)[i] = 1;
  }
}

template <typename T, typename Context>
inline void SubmPreProcess(const Context& dev_ctx,
                           const SparseCooTensor& x,
                           const DenseTensor& kernel,
Z
zhangkaihuo 已提交
159
                           const DenseTensor& out_grad,
160 161 162 163 164 165
                           const int in_channels,
                           const int out_channels,
                           const int half_kernel_size,
                           DenseTensor* kernel_grad,
                           DenseTensor* x_grad) {
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
166 167 168 169 170 171 172 173 174 175 176 177 178 179
  const bool is_params_freezing = kernel_grad == nullptr;
  if (!is_params_freezing) {
    T* d_kernel_ptr = kernel_grad->data<T>();
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              x.non_zero_elements().dims()[1],
              out_grad.dims()[1],
              x.non_zero_elements().dims()[0],
              static_cast<T>(1),
              x.non_zero_elements().data<T>(),
              out_grad.data<T>(),
              static_cast<T>(0),
              d_kernel_ptr + half_kernel_size * in_channels * out_channels);
  }
180 181 182 183 184 185

  // call gemm: d_x = out_grad * transpose(kernel)
  // (n, out_channels) * (out_channels, in_channels)
  T* x_grad_ptr = x_grad->data<T>();
  blas.GEMM(CblasNoTrans,
            CblasTrans,
Z
zhangkaihuo 已提交
186
            out_grad.dims()[0],
187
            in_channels,
Z
zhangkaihuo 已提交
188
            out_grad.dims()[1],
189
            static_cast<T>(1),
Z
zhangkaihuo 已提交
190
            out_grad.data<T>(),
191 192 193 194 195
            kernel.data<T>() + half_kernel_size * in_channels * out_channels,
            static_cast<T>(0),
            x_grad_ptr);
}

Z
zhangkaihuo 已提交
196 197 198 199 200 201 202 203 204 205 206
inline const std::vector<int> PoolResetKernel(
    const std::vector<int>& kernel_sizes,
    const int in_channels,
    const int out_channels) {
  std::vector<int> res(kernel_sizes);
  res.resize(5);
  res[3] = in_channels;
  res[4] = out_channels;
  return res;
}

207 208 209
template <typename T>
inline void PrefixSum(const T* counter, T* offsets, const int n) {
  T offset = 0;
Z
zhangkaihuo 已提交
210 211 212 213 214 215 216
  for (int i = 0; i < n; i++) {
    offsets[i] = offset;
    offset += counter[i];
  }
  offsets[n] = offset;
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
template <typename IntT>
inline const IntT* GetRulebookPtr(const SparseCooTensor& coo,
                                  const DenseTensor& rulebook,
                                  const std::string& key,
                                  int* rulebook_len) {
  if (!key.empty()) {
    const auto* indices_pairs = coo.IndicesPairs(key);
    if (indices_pairs != nullptr) {
      const DenseTensor& tmp_rulebook = indices_pairs->first;
      *rulebook_len = tmp_rulebook.dims()[1];
      return tmp_rulebook.data<IntT>();
    }
  }
  *rulebook_len = rulebook.dims()[1];
  return rulebook.data<IntT>();
}

inline const int* GetCounterPtr(const SparseCooTensor& coo,
                                const DenseTensor& counter,
                                const std::string& key) {
  if (!key.empty()) {
    const auto* indices_pairs = coo.IndicesPairs(key);
    if (indices_pairs != nullptr) {
      return indices_pairs->second.data<int>();
    }
  }
  return counter.data<int>();
}

template <typename T, typename IntT, typename Context>
inline const IntT* PrepareSubm(const Context& dev_ctx,
                               const SparseCooTensor& x,
                               const std::string& key,
                               const DDim& out_dims,
                               SparseCooTensor* out,
                               int* counter,
                               int* offsets,
                               int* rulebook_len,
                               bool* need_product_rulebook) {
  const auto* indices_pairs = x.IndicesPairs(key);
  if (indices_pairs != nullptr) {
    *need_product_rulebook = false;
    const DenseTensor& rulebook = indices_pairs->first;
    const int counter_size = indices_pairs->second.numel();
    memcpy(
        counter, indices_pairs->second.data<int>(), counter_size * sizeof(int));
    out->SetIndicesDict(x.GetIndicesDict());

    *rulebook_len = rulebook.dims()[1];

    DenseTensor out_indices =
        phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
    DenseTensor out_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
    phi::Copy(
        dev_ctx, x.non_zero_indices(), dev_ctx.GetPlace(), false, &out_indices);
    out->SetMember(out_indices, out_values, out_dims, false);
    PrefixSum<int>(counter, offsets, counter_size);
    return rulebook.data<IntT>();
  }
  return nullptr;
}

template <typename Context>
inline void SaveToTable(const Context& dev_ctx,
                        const SparseCooTensor& x,
                        const std::string& key,
                        const DenseTensor& in_rulebook,
                        const DenseTensor& h_counter,
                        SparseCooTensor* out,
                        DenseTensor* out_rulebook,
                        DenseTensor* counter) {
  out->SetIndicesDict(x.GetIndicesDict());
  if (!key.empty()) {
    out->SaveIndicesPairs(key, std::make_pair(in_rulebook, h_counter));
  } else {
    *out_rulebook = in_rulebook;
    counter->Resize({h_counter.numel()});
    int* counter_ptr = dev_ctx.template HostAlloc<int>(counter);
    memcpy(counter_ptr, h_counter.data<int>(), h_counter.numel() * sizeof(int));
  }
}

299 300 301
}  // namespace sparse
}  // namespace funcs
}  // namespace phi