generate_op.py 26.9 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
import math
17 18 19 20
import os
from pathlib import Path

import yaml
21
from filters import (
22
    assert_dense_or_sr,
23
    cartesian_prod_mapping,
24 25
    delete_last_underline,
    find_optinal_inputs_name,
26
    get_infer_var_type_func,
J
Jiabin Yang 已提交
27
    to_composite_grad_opmaker_name,
28
    to_input_name,
29 30
    to_int_array_tensor_name,
    to_int_array_tensors_name,
31 32 33 34
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
35
    to_scalar_tensor_name,
36
    to_variable_names,
37
)
38 39
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
C
Charles-hit 已提交
40
from tests_utils import (
41
    is_base_op,
J
Jiabin Yang 已提交
42
    is_composite_op,
43
    is_initializer_list,
44 45
    is_scalar,
    is_vec,
46 47 48
    supports_inplace,
    supports_no_need_buffer,
)
49 50

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
51 52 53 54 55 56 57 58
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
59 60 61
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
62 63 64
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
65 66
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
67
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
J
Jiabin Yang 已提交
68
env.filters["to_composite_grad_opmaker_name"] = to_composite_grad_opmaker_name
69
env.filters["to_variable_names"] = to_variable_names
70
env.filters["get_infer_var_type_func"] = get_infer_var_type_func
71 72
env.filters["assert_dense_or_sr"] = assert_dense_or_sr
env.filters["find_optinal_inputs_name"] = find_optinal_inputs_name
73
env.tests["base_op"] = is_base_op
J
Jiabin Yang 已提交
74
env.tests["composite_op"] = is_composite_op
75 76 77 78 79 80 81
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


82 83 84 85 86
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
87 88


89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
111 112 113 114 115 116
                attr_item['data_type'] = (
                    scalar_config['data_type']
                    if 'data_type' in scalar_config
                    else scalar_map[attr_type]
                )
                if attr_item['is_support_tensor'] is False:
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
140 141 142 143 144 145
                attr_item['data_type'] = (
                    data_type_map[int_array_config['data_type']]
                    if 'data_type' in int_array_config
                    else 'std::vector<int64_t>'
                )
                if attr_item['is_support_tensor'] is False:
146 147 148 149 150 151 152 153 154 155 156
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
def add_composite_info(ops, backward_ops, backward_op_dict):
    # add backward composite name in forward
    for op in ops + backward_ops:
        if (
            op["backward"] in backward_op_dict
            and "composite" in backward_op_dict[op["backward"]]
        ):
            op["backward_composite"] = op["backward"]
        else:
            op["backward_composite"] = None


# add fluid name in ops and backward ops info
def add_fluid_name(dict_list):
    for item in dict_list:
        item["fluid_name"] = item["name"]


# add fluid name of op and params for OpMaker
def add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
177
    def get_phi_and_fluid_op_name(op_item):
178
        names = op_item.split('(')
179 180 181 182 183
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

184
    def add_op_param_name(op_args, args_alias_map):
185 186
        for item in op_args:
            if item['name'] in args_alias_map:
187 188 189
                item['fluid_name'] = args_alias_map[item['name']]
            else:
                item['fluid_name'] = item['name']
190

191
    def add_grad_args_name(op_args, args_alias_map):
192 193 194 195 196 197 198 199
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
200 201 202 203 204 205
                item['fluid_name'] = args_alias_map[item['name'][:-5]] + '_grad'
            elif (
                item['name'].endswith('_grad')
                and item['name'][:-5] not in args_alias_map
            ):
                item['fluid_name'] = item['name']
J
Jiabin Yang 已提交
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )
229 230 231 232 233 234 235 236 237 238
        if 'data_transform' in op_item and op_item['data_transform']:
            data_trans_item = op_item['data_transform']
            if 'skip_transform' in data_trans_item:
                data_trans_item['skip_transform'] = get_param_list_alias(
                    data_trans_item['skip_transform'], args_map
                )
            if 'support_trans_dtype' in data_trans_item:
                data_trans_item['support_trans_dtype'] = get_param_list_alias(
                    data_trans_item['support_trans_dtype'], args_map
                )
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

270 271 272 273 274 275 276 277 278
    def add_grad_op_compat_name(grad_op_item, args_name_map):
        add_op_param_name(grad_op_item['inputs'], args_name_map)
        add_op_param_name(grad_op_item['outputs'], args_name_map)
        add_op_param_name(grad_op_item['attrs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        add_grad_args_name(grad_op_item['inputs'], args_map)
        add_grad_args_name(grad_op_item['outputs'], args_map)
279 280 281

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
282
        if new_op_name not in forward_op_dict:
283
            continue
284 285
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
286
        if has_backward:
287 288 289
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
290

291 292 293 294 295
        # add complex promote infomation
        if "complex_promote" in op_args:
            forward_op_item["complex_promote"] = op_args["complex_promote"]
            if has_backward:
                backward_op_item["complex_promote"] = op_args["complex_promote"]
296 297 298 299 300 301
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
302 303 304 305
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
328 329 330
                        args_item['fluid_name'] = op_args[key][
                            args_item['name']
                        ]
331 332 333 334 335
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
336 337
            # update fluid info in backward
            add_grad_op_compat_name(backward_op_item, args_map)
338 339 340 341 342 343
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )

            if 'backward' not in op_args:
                continue
344

345
            backward_op_list = op_args['backward'].split(',')
346 347 348 349 350 351 352 353
            phi_bw_op_name, bw_op_name = get_phi_and_fluid_op_name(
                backward_op_list[0]
            )
            if (
                forward_op_item["backward_composite"] is not None
                and phi_bw_op_name != bw_op_name
            ):
                forward_op_item["backward_composite"] = bw_op_name
354 355
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
356

357 358
            # for double grad
            if len(backward_op_list) > 1:
359
                (
360
                    phi_double_grad_op_name,
361
                    double_grad_op_name,
362 363
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
364 365 366 367 368
                if (
                    backward_op_item["backward_composite"] is not None
                    and phi_double_grad_op_name != double_grad_op_name
                ):
                    backward_op_item["backward_composite"] = double_grad_op_name
369
                backward_op_item['backward'] = double_grad_op_name
370
                double_grad_item['op_name'] = double_grad_op_name
371
                add_grad_op_compat_name(double_grad_item, args_map)
372 373 374 375 376 377
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
378

379 380 381
                # for triple grad
                if len(backward_op_list) > 2:
                    (
382
                        phi_triple_grad_op_name,
383
                        triple_grad_op_name,
384 385
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
386 387 388 389 390 391 392
                    if (
                        double_grad_item["backward_composite"] is not None
                        and phi_triple_grad_op_name != triple_grad_op_name
                    ):
                        double_grad_item[
                            "backward_composite"
                        ] = triple_grad_op_name
393 394
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
395
                    add_grad_op_compat_name(triple_grad_item, args_map)
396 397 398 399 400
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
401
                    )
402

403

404 405 406 407 408
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
409
            args_index = 0
HappyHeavyRain's avatar
HappyHeavyRain 已提交
410
            # backward invoke forward
411 412
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
413
                bw_op['invoke']['func'] = reuse_op['op_name']
414 415 416
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
417
                for input_item in reuse_op['inputs']:
418
                    bw_op['invoke']['inputs'].append(
419
                        {
420
                            'fluid_name': input_item['fluid_name'],
421 422 423 424
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
425
                    args_index = args_index + 1
426 427 428
                bw_fluid_attrs_set = [
                    item['fluid_name'] for item in bw_op['attrs']
                ]
429 430
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
431 432
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
433
                            if args_list[args_index] in bw_fluid_attrs_set
434 435
                            else args_list[args_index]
                        )
436
                        bw_op['invoke']['attrs'].append(
437 438 439 440 441
                            {
                                'name': attr['name'],
                                'fluid_name': attr['fluid_name'],
                                'value': attr_value,
                            }
442
                        )
443 444 445 446
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
447
                    bw_op['invoke']['outputs'].append(
448 449
                        {
                            'name': output_item['name'],
450 451
                            'fluid_name': output_item['fluid_name'],
                            'value': bw_op['outputs'][idx]['fluid_name'],
452 453 454 455
                        }
                    )


456
def parse_drop_empty_grad(op_fluid_list: list, bw_op_dict: dict):
457 458
    for op_comp_map in op_fluid_list:
        if 'drop_empty_grad' in op_comp_map:
459 460
            bw_names = [
                bw_name.split('(')[0].strip()
461
                for bw_name in op_comp_map['backward'].split(',')
462 463
            ]
            for bw_name in bw_names:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
464 465
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if bw_name in bw_op_dict:
466
                    for out_grad in op_comp_map['drop_empty_grad']:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
467 468 469 470 471 472 473
                        assert (
                            out_grad in bw_op_dict[bw_name]['output_dict']
                        ), f'''
                            {bw_name} with {out_grad} is not existed in output_dict '''
                        bw_op_dict[bw_name]['output_dict'][out_grad][
                            'drop_empty_grad'
                        ] = False
474 475


476 477 478 479 480 481 482 483 484 485 486 487
def parse_get_expected_kerneltype(
    op_fluid_list: list, fw_op_dict: dict, bw_op_dict: dict
):
    for op_comp_map in op_fluid_list:
        if 'get_expected_kernel_type' in op_comp_map:
            fw_name = op_comp_map['op'].split('(')[0].strip()
            if fw_name in op_comp_map['get_expected_kernel_type']:
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if fw_name in fw_op_dict:
                    fw_op_dict[fw_name][
                        "get_expected_kernel_type"
                    ] = op_comp_map['get_expected_kernel_type'][fw_name]
488 489 490 491 492 493 494 495 496 497 498 499 500 501
            if "backward" in op_comp_map:
                bw_names = [
                    bw_name.split('(')[0].strip()
                    for bw_name in op_comp_map['backward'].split(',')
                ]
                for bw_name in bw_names:
                    # static_ops.yaml and ops.yaml use the common op_compat.yaml
                    if (
                        bw_name in bw_op_dict
                        and bw_name in op_comp_map['get_expected_kernel_type']
                    ):
                        bw_op_dict[bw_name][
                            "get_expected_kernel_type"
                        ] = op_comp_map['get_expected_kernel_type'][bw_name]
502 503 504 505 506 507 508 509 510 511 512 513 514 515


def parse_keep_signature(
    op_fluid_list: list, fw_op_dict: dict, bw_op_dict: dict
):
    for op_comp_map in op_fluid_list:
        if 'manual_signature' in op_comp_map:
            for op_name in op_comp_map['manual_signature']:
                if op_name in fw_op_dict:
                    fw_op_dict[op_name]["manual_signature"] = True
                elif op_name in bw_op_dict:
                    bw_op_dict[op_name]["manual_signature"] = True


516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
def split_ops_list(ops, backward_op_dict, split_num):
    new_ops_list = []
    new_bw_ops_list = []
    list_size = math.ceil(len(ops) / split_num)
    tmp_ops_list = []
    tmp_bw_ops_list = []
    for idx, op in enumerate(ops):
        tmp_ops_list.append(op)
        current_op = op
        while (
            'backward' in current_op
            and current_op['backward'] in backward_op_dict
        ):
            tmp_bw_ops_list.append(backward_op_dict[current_op['backward']])
            current_op = backward_op_dict[current_op['backward']]
        if (idx + 1) % list_size == 0 or idx == len(ops) - 1:
            new_ops_list.append(tmp_ops_list)
            new_bw_ops_list.append(tmp_bw_ops_list)
            tmp_ops_list = []
            tmp_bw_ops_list = []
    return new_ops_list, new_bw_ops_list


539 540 541 542 543 544 545 546 547 548 549 550 551 552
def to_phi_and_fluid_op_name_without_underline(op_item):
    '''
    If the op_name ends with '_', delete the last '_'. For an example, 'sgd_' becomes 'sgd
    '''
    names = op_item.split('(')
    if len(names) == 1:
        op_kernel_name = delete_last_underline(names[0].strip())
        return op_kernel_name
    else:
        op_name = delete_last_underline(names[0].strip())
        kernel_name = delete_last_underline(names[1].split(')')[0].strip())
        return op_name + '(' + kernel_name + ')'


553 554 555 556 557 558 559 560
def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
561
    with open(ops_yaml_path, "rt") as f:
562 563
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
564
    forward_op_dict = to_named_dict(ops, True)
565
    with open(backward_yaml_path, "rt") as f:
566 567
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
568
    backward_op_dict = to_named_dict(backward_ops, True)
569
    with open(op_version_yaml_path, "rt") as f:
570 571 572
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
573 574
        if op_version['op'] in forward_op_dict:
            forward_op_dict[op_version['op']]['version'] = op_version['version']
575 576

    with open(op_compat_yaml_path, "rt") as f:
577
        op_fluid_map_list = yaml.safe_load(f)
578 579 580 581
        for op_args in op_fluid_map_list:
            op_args["op"] = to_phi_and_fluid_op_name_without_underline(
                op_args["op"]
            )
582

583 584
    for op in ops:
        op['op_name'] = op['name']
585 586 587
        add_fluid_name(op['inputs'])
        add_fluid_name(op['attrs'])
        add_fluid_name(op['outputs'])
588 589
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
590 591 592 593 594 595
        add_fluid_name(bw_op['inputs'])
        add_fluid_name(bw_op['attrs'])
        add_fluid_name(bw_op['outputs'])
        add_fluid_name(bw_op['forward']['inputs'])
        add_fluid_name(bw_op['forward']['attrs'])
        add_fluid_name(bw_op['forward']['outputs'])
596 597 598 599 600
        for bw_output in bw_op['outputs']:
            bw_output['drop_empty_grad'] = True

    # deal the drop_empty_grad of bw_op by op_compat.yaml
    parse_drop_empty_grad(op_fluid_map_list, backward_op_dict)
601

602 603 604 605 606 607
    parse_get_expected_kerneltype(
        op_fluid_map_list, forward_op_dict, backward_op_dict
    )

    parse_keep_signature(op_fluid_map_list, forward_op_dict, backward_op_dict)

608
    add_composite_info(ops, backward_ops, backward_op_dict)
J
Jiabin Yang 已提交
609

610
    add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
611 612

    # prepare for invoke case
613
    process_invoke_op(forward_op_dict, backward_op_dict)
614

615 616 617 618 619 620 621
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
622

623 624 625 626
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
    if len(ops) == 0 and len(backward_ops) == 0:
627 628 629 630 631 632
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return
    op_template = env.get_template('op.c.j2')
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

    backward_fluid_op_dict = {}
    for bw_op in backward_ops:
        backward_fluid_op_dict[bw_op['op_name']] = bw_op
    output_op_files_num = len(output_op_path)
    new_ops_list, new_bw_ops_list = split_ops_list(
        ops, backward_fluid_op_dict, output_op_files_num
    )
    for idx, output_op_file in enumerate(output_op_path):
        with open(output_op_file, "wt") as f:
            msg = op_template.render(
                ops=new_ops_list[idx],
                backward_ops=new_bw_ops_list[idx],
                op_dict=op_dict,
            )
            f.write(msg)

650 651
    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
652
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
653 654 655 656 657
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
658
        description="Generate operator file from op yaml."
659 660 661 662 663 664 665 666 667 668 669 670 671 672
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
673 674 675 676
        "--output_op_path",
        type=str,
        nargs='+',
        help="path to save generated operators.",
677
    )
678 679 680
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
681 682
        help="path to save generated argument mapping functions.",
    )
683 684

    args = parser.parse_args()
685 686 687 688 689 690 691 692
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )