onednn_helper.h 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <thread>
18 19 20 21 22 23 24 25 26 27 28
#include "dnnl.hpp"  // NOLINT
#include "glog/logging.h"

#include "paddle/phi/backends/onednn/onednn_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"

namespace phi {
namespace funcs {

29 30
using OneDNNMemoryFormat = dnnl::memory::format_tag;
using OneDNNDataType = dnnl::memory::data_type;
31 32 33 34 35 36

template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

37 38
inline OneDNNMemoryFormat OneDNNFormatForSize(size_t dims_size,
                                              OneDNNMemoryFormat data_format) {
39
  if (dims_size == 1) {
40
    return OneDNNMemoryFormat::x;
41
  } else if (dims_size == 2) {
42
    return OneDNNMemoryFormat::nc;
43
  } else if (dims_size == 3) {
44 45 46 47
    if (data_format == OneDNNMemoryFormat::nchw) {
      return OneDNNMemoryFormat::ncw;
    } else if (data_format == OneDNNMemoryFormat::nhwc) {
      return OneDNNMemoryFormat::nwc;
48 49
    }
  } else if (dims_size == 4) {
50 51
    if (data_format == OneDNNMemoryFormat::goihw) {
      return OneDNNMemoryFormat::oihw;
52 53
    }
  } else if (dims_size == 5) {
54 55
    if (data_format == OneDNNMemoryFormat::goidhw) {
      return OneDNNMemoryFormat::oidhw;
56
    }
57 58 59 60
    if (data_format == OneDNNMemoryFormat::nchw) {
      return OneDNNMemoryFormat::ncdhw;
    } else if (data_format == OneDNNMemoryFormat::nhwc) {
      return OneDNNMemoryFormat::ndhwc;
61 62
    }
  } else if (dims_size == 6) {
63 64
    if (data_format == OneDNNMemoryFormat::nchw) {
      return OneDNNMemoryFormat::abcdef;
65 66 67 68 69
    }
  }
  return data_format;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
inline dnnl::memory::format_tag GetPlainOneDNNFormat(int tensor_rank) {
  switch (tensor_rank) {
    case 1:
      return dnnl::memory::format_tag::a;
    case 2:
      return dnnl::memory::format_tag::ab;
    case 3:
      return dnnl::memory::format_tag::abc;
    case 4:
      return dnnl::memory::format_tag::abcd;
    case 5:
      return dnnl::memory::format_tag::abcde;
    case 6:
      return dnnl::memory::format_tag::abcdef;
    case 7:
      return dnnl::memory::format_tag::abcdefg;
    case 8:
      return dnnl::memory::format_tag::abcdefgh;
    case 9:
      return dnnl::memory::format_tag::abcdefghi;
    default:
      PADDLE_THROW(phi::errors::Unimplemented(
          "Paddle support tensors with rank in range <1, 9>, but received "
          "tensor with rank: %d",
          tensor_rank));
  }
}

98
template <typename Type>
99
dnnl::memory::data_type OneDNNGetDataType() {
100 101 102 103
  return dnnl::memory::data_type::undef;
}

template <>
104
inline dnnl::memory::data_type OneDNNGetDataType<float>() {
105 106 107
  return dnnl::memory::data_type::f32;
}
template <>
108
inline dnnl::memory::data_type OneDNNGetDataType<int32_t>() {
109 110 111
  return dnnl::memory::data_type::s32;
}
template <>
112
inline dnnl::memory::data_type OneDNNGetDataType<int8_t>() {
113 114 115
  return dnnl::memory::data_type::s8;
}
template <>
116
inline dnnl::memory::data_type OneDNNGetDataType<uint8_t>() {
117 118 119 120
  return dnnl::memory::data_type::u8;
}

template <>
121
inline dnnl::memory::data_type OneDNNGetDataType<dtype::bfloat16>() {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  return dnnl::memory::data_type::bf16;
}

inline std::vector<std::vector<int64_t>> ToOneDNNPadding(
    const std::vector<int64_t>& paddings) {
  if (paddings.size() == 6) {
    int padding_front = paddings[0];
    int padding_back = paddings[1];
    int padding_top = paddings[2];
    int padding_bottom = paddings[3];
    int padding_left = paddings[4];
    int padding_right = paddings[5];

    return {{padding_front, padding_top, padding_left},
            {padding_back, padding_bottom, padding_right}};
  } else {
    int padding_top = paddings[0];
    int padding_bottom = paddings[1];
    int padding_left = paddings[2];
    int padding_right = paddings[3];

    return {{padding_top, padding_left}, {padding_bottom, padding_right}};
  }
}

template <typename T>
inline void AppendKey(std::string* key, const T& num) {
  key->append(std::to_string(num));
}

template <>
inline void AppendKey(std::string* key,
                      const dnnl::memory::format_tag& format) {
  key->append(std::to_string(static_cast<int>(format)));
}

template <>
inline void AppendKey(std::string* key,
                      const dnnl::memory::data_type& data_type) {
  key->append(std::to_string(static_cast<int>(data_type)));
}

template <>
inline void AppendKey(std::string* key, const dnnl::algorithm& algorithm) {
  key->append(std::to_string(static_cast<int>(algorithm)));
}

template <>
inline void AppendKey(std::string* key,
                      const dnnl::normalization_flags& flags) {
  key->append(std::to_string(static_cast<int>(flags)));
}

inline void AppendKey(std::string* key, const std::string& str) {
  key->append(str);
}

inline void AppendKey(std::string* key, const char* str) { key->append(str); }

template <typename T>
inline void AppendKey(std::string* key, const std::vector<T>& dims) {
  for (size_t i = 0; i < dims.size(); i++) {
    AppendKey(key, std::to_string(dims[i]));
  }
}

template <typename... ArgTypes>
inline std::string CreateKey(const OneDNNContext& dev_ctx, ArgTypes&&... args) {
  std::string key;
  key.reserve(64);
  using expand_type = int[];
  expand_type{0, (AppendKey(&key, std::forward<ArgTypes>(args)), 0)...};
  key += OneDNNContext::tls().get_key_suffix();
  return key;
}

198 199 200 201 202 203 204 205 206 207 208 209 210
// The function adjusts the vector of weight dimensions for group convolutions
inline void GetGroupConvWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                                  const int groups) {
  if (groups > 1) {
    // if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
  }
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
inline void MatchShapeToLayout(DenseTensor* tensor_in,
                               DataLayout from,
                               DataLayout to) {
  auto print_dims = [](const std::vector<int>& dims) {
    std::ostringstream oss;

    if (!dims.empty()) {
      oss << "[";
      // Convert all but the last element to avoid a trailing ","
      std::copy(
          dims.begin(), dims.end() - 1, std::ostream_iterator<int>(oss, ","));

      // Now add the last element with no delimiter
      oss << dims.back() << "]";
    }

    return oss.str();
  };

  // In these data layouts, channel dimension is either on 2nd position: nChw or
  // at last nhwC, so for dim==2 these layouts are the same and nothing should
  // be done. Similarly for dim==1 when you have just one possible combination.
  if (tensor_in->dims().size() < 3) {
234
    VLOG(3) << "Keeping ONEDNN/NHWC/NDHWC output_shape"
235 236 237 238 239
            << print_dims(phi::vectorize<int>(tensor_in->dims()));
    return;
  }

  switch (from) {
240
    case DataLayout::ONEDNN:
241 242 243 244
      if ((to == DataLayout::NHWC) || (to == DataLayout::NDHWC)) {
        auto dims = phi::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
        tensor_in->Resize(phi::make_ddim(dims));
245
        VLOG(3) << "Rotating Shape from: ONEDNN to: NHWC/NDHWC output_shape"
246 247 248 249 250
                << print_dims(dims);
      }
      break;
    case DataLayout::NHWC:
    case DataLayout::NDHWC:
251
      if (to == DataLayout::ONEDNN) {
252 253 254
        auto dims = phi::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.end() - 1, dims.end());
        tensor_in->Resize(phi::make_ddim(dims));
255
        VLOG(3) << "Rotating Shape from: NHWC/NDHWC to: ONEDNN output_shape"
256 257 258 259 260 261 262 263
                << print_dims(dims);
      }
      break;
    default:
      break;
  }
}

264
struct onednn_dummy_primitive {
265 266 267 268
  struct primitive_desc {};
  struct desc {};
};

269
inline dnnl::memory::desc OneDNNMemDesc(const std::vector<int64_t>& dims,
270
                                        dnnl::memory::data_type data_type,
271
                                        OneDNNMemoryFormat format) {
272 273 274
  return dnnl::memory::desc({dims}, data_type, format);
}

275 276 277 278 279 280 281 282 283 284 285 286
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

inline std::string ExtendKeyWithThreadInfoIfNeeded(const OneDNNContext& dev_ctx,
                                                   const std::string& key) {
  return (OneDNNContext::tls().is_tid_used_in_key() == true)
             ? key + "-t:" + ThreadIDasStr()
             : key;
}

287 288
}  // namespace funcs
}  // namespace phi