test_detection.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
C
chengduoZH 已提交
16 17
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
18
import paddle.v2.fluid.layers as layers
C
chengduoZH 已提交
19
import paddle.v2.fluid.layers.detection as detection
20
from paddle.v2.fluid.framework import Program, program_guard
C
chengduoZH 已提交
21 22
import unittest
import numpy as np
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


class TestBook(unittest.TestCase):
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
                shape=[20, 4],
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=[2, 20, 10],
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
            self.assertIsNotNone(out)
        print(str(program))


C
chengduoZH 已提交
55 56
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
57 58 59 60 61 62
        data_shape = [3, 224, 224]
        box, var = self.prior_box_output(data_shape)

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
C
chengduoZH 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    def prior_box_output(self, data_shape):
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(
            input=images,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv2 = fluid.layers.conv2d(
            input=conv1,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv3 = fluid.layers.conv2d(
            input=conv2,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv4 = fluid.layers.conv2d(
            input=conv3,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv5 = fluid.layers.conv2d(
            input=conv4,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)

        box, var = detection.prior_box(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            min_ratio=20,
            max_ratio=90,
            # steps=[8, 16, 32, 64, 100, 300],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
        return box, var


112 113
if __name__ == '__main__':
    unittest.main()