test_engine_callbacks.py 5.5 KB
Newer Older
Z
zhaoyingli 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import random
Z
zhaoyingli 已提交
16
import shutil
17
import tempfile
Z
zhaoyingli 已提交
18
import time
19
import unittest
Z
zhaoyingli 已提交
20 21 22 23

import paddle
import paddle.vision.transforms as T
from paddle.distributed.auto_parallel.callbacks import config_callbacks
24 25
from paddle.distributed.fleet import auto
from paddle.static import InputSpec
Z
zhaoyingli 已提交
26
from paddle.vision.datasets import MNIST
27
from paddle.vision.models import LeNet
Z
zhaoyingli 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

paddle.enable_static()


class TestCallbacks(unittest.TestCase):
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

    def run_callback(self):
        epochs = 2
        steps = 5
        freq = 2
        eval_steps = 2

        inputs_spec = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
        strategy = auto.Strategy()
        strategy.auto_mode = "semi"

        engine = auto.Engine(LeNet(), strategy=strategy)
        engine.prepare(inputs_spec, mode="predict")

52 53 54 55 56 57 58 59 60 61
        cbks = config_callbacks(
            engine=engine,
            batch_size=128,
            epochs=epochs,
            steps=steps,
            log_freq=freq,
            verbose=self.verbose,
            metrics=['loss', 'acc'],
            save_dir=self.save_dir,
        )
Z
zhaoyingli 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        cbks.on_begin('train')

        logs = {'loss': 50.341673, 'acc': 0.00256}
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            for step in range(steps):
                cbks.on_batch_begin('train', step, logs)
                logs['loss'] -= random.random() * 0.1
                logs['acc'] += random.random() * 0.1
                time.sleep(0.005)
                cbks.on_batch_end('train', step, logs)
            cbks.on_epoch_end(epoch, logs)

            eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256}
            params = {
                'steps': eval_steps,
                'metrics': ['eval_loss', 'eval_acc'],
            }
            cbks.on_begin('eval', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('eval', step, eval_logs)
                eval_logs['eval_loss'] -= random.random() * 0.1
                eval_logs['eval_acc'] += random.random() * 0.1
                eval_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('eval', step, eval_logs)
            cbks.on_end('eval', eval_logs)

            test_logs = {}
            params = {'steps': eval_steps}
            cbks.on_begin('predict', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('predict', step, test_logs)
                test_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('predict', step, test_logs)
            cbks.on_end('predict', test_logs)

        cbks.on_end('train')

        print(engine.history.history)

    def test_callback_verbose_0(self):
        self.verbose = 0
        self.run_callback()

    def test_callback_verbose_1(self):
        self.verbose = 1
        self.run_callback()

    def test_callback_verbose_2(self):
        self.verbose = 2
        self.run_callback()

    def test_callback_verbose_3(self):
        self.verbose = 3
        self.run_callback()


class TestCallbacksEngine(unittest.TestCase):
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        self.train_dataset = MNIST(mode='train', transform=transform)
        self.test_dataset = MNIST(mode='test', transform=transform)
        self.prepare_engine()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

    def prepare_engine(self):
        model = paddle.vision.models.LeNet()
        loss = paddle.nn.CrossEntropyLoss()
        base_lr = 1e-3
        boundaries = [5, 8]
        values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
138 139 140 141 142 143
        lr = paddle.optimizer.lr.PiecewiseDecay(
            boundaries=boundaries, values=values, verbose=False
        )
        optimizer = paddle.optimizer.Adam(
            learning_rate=lr, parameters=model.parameters()
        )
Z
zhaoyingli 已提交
144 145 146 147 148
        auto.fetch(model.parameters()[0], "param0", logging=True)
        metrics = paddle.metric.Accuracy(topk=(1, 2))
        self.engine = auto.Engine(model, loss, optimizer, metrics)

    def test_fit_eval(self):
149 150 151 152 153 154 155 156 157 158
        history = self.engine.fit(
            train_data=self.train_dataset,
            valid_data=self.test_dataset,
            batch_size=128,
            steps_per_epoch=60,
            valid_steps=40,
            log_freq=20,
            save_dir=self.save_dir,
            save_freq=1,
        )
Z
zhaoyingli 已提交
159 160 161
        print(history.history)

    def test_eval(self):
162 163 164
        self.engine.evaluate(
            valid_data=self.test_dataset, batch_size=128, steps=40, log_freq=10
        )
Z
zhaoyingli 已提交
165 166 167

    def test_predict(self):
        logger_cbks = paddle.callbacks.ProgBarLogger()
168 169 170
        self.engine.predict(
            test_data=self.test_dataset, batch_size=128, callbacks=[logger_cbks]
        )
Z
zhaoyingli 已提交
171 172 173 174


if __name__ == '__main__':
    unittest.main()