fleet.py 54.9 KB
Newer Older
W
wuhuachaocoding 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import os
17 18

import paddle
19
from paddle.fluid import compiler
20
from paddle.fluid.wrapped_decorator import wrap_decorator
21
from paddle.framework import _global_flags, in_dynamic_mode
22
from paddle.framework.ir import apply_build_strategy
23

W
wuhuachaocoding 已提交
24
from .base import topology as tp
25 26 27 28 29
from .base.distributed_strategy import DistributedStrategy
from .base.meta_optimizer_factory import MetaOptimizerFactory
from .base.role_maker import PaddleCloudRoleMaker, RoleMakerBase
from .base.runtime_factory import RuntimeFactory
from .base.strategy_compiler import StrategyCompiler
W
wuhuachaocoding 已提交
30
from .meta_parallel import model_parallel_random_seed
R
Roc 已提交
31
from .utils.log_util import logger, set_log_level
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
50 51 52 53
        # have conflict with fuse_all_reduce_ops because
        # RawProgramOptimizer also inserts coalesce_tensor
        # into program. These two procedures may conflict
        # in which vars are to be fused.
R
Roc 已提交
54
        logger.warning(
55 56 57 58
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

59 60 61
    return apply_build_strategy(
        main_program, startup_program, build_strategy, pass_attrs
    )
62 63


64 65 66 67 68 69 70 71 72 73 74 75
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


76 77 78 79
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

80 81 82 83
        if (
            cls._role_maker is not None
            and cls._role_maker._is_non_distributed() is True
        ):
R
Roc 已提交
84
            logger.warning(
85 86 87
                "%s() function doesn't work when use non_distributed fleet."
                % (func.__name__)
            )
88 89 90 91 92 93 94
            return

        return func(*args, **kwargs)

    return __impl__


95
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
96
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
97 98


99
class Fleet:
100 101
    """
    Unified API for distributed training of PaddlePaddle
102
    Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
103 104 105 106 107


    Returns:
        Fleet: A Fleet instance

108
    Example for collective training:
1
123malin 已提交
109

110 111
        .. code-block:: python

1
123malin 已提交
112 113
            import paddle
            paddle.enable_static()
114
            import paddle.distributed.fleet as fleet
115 116 117

            fleet.init(is_collective=True)

118 119 120
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
121 122 123 124 125 126 127 128

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
129 130
            import paddle
            paddle.enable_static()
131 132
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
133
            fleet.init(strategy=strategy)
134

135
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
136
            optimizer = fleet.distributed_optimizer(optimizer)
137

138 139
            if fleet.is_first_worker():
                print("this is first worker")
140

141 142
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
143

144 145 146
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
147

148 149
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
150

151 152 153
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
154 155


156 157 158
    """

    def __init__(self):
159
        self._role_maker = None
160
        self.strategy_compiler = None
161
        self._is_collective = False
162
        self._runtime_handle = None
D
Dong Daxiang 已提交
163 164
        self._util = None
        self._context = {}
W
wuhuachaocoding 已提交
165
        self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0)
166

167 168 169 170 171 172 173
    def init(
        self,
        role_maker=None,
        is_collective=False,
        strategy=None,
        log_level="INFO",
    ):
174 175 176
        """
        Initialize role_maker in Fleet.

177 178 179 180 181
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
182
                of environment variables related to distributed training.If you did not initialize
183 184
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
185
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program
186
                runs on Collective mode or ParameterServer mode. True means the program runs on
187
                Collective mode, and False means running on ParameterServer mode. The default value
188
                is False.
189
            strategy (DistributedStrategy): Extra properties for distributed training.
190
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.
R
Roc 已提交
191 192
            log_level (Integer, String, optional): A ``Integer`` or ``String`` Variable determining how hight
                the logging level is. Default is "INFO".
193 194


195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
217
                role = fleet.PaddleCloudRoleMaker()
218
                fleet.init(role)
219

220 221 222 223 224 225
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
226
                fleet.init(strategy=strategy)
227

R
Roc 已提交
228 229 230 231 232 233 234 235
        Examples5:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(log_level = "DEBUG")

236
        """
Q
qizhaoaoe 已提交
237
        from paddle.distributed import parallel_helper
R
Roc 已提交
238 239 240

        set_log_level(log_level)

S
ShenLiang 已提交
241 242 243
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
244 245

        if role_maker is None:
246 247 248
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
249 250
                    is_collective=self._is_collective
                )
251 252
            else:
                raise ValueError(
253 254 255 256
                    "`is_collective` should be instance of `bool`, but got {}".format(
                        type(is_collective)
                    )
                )
257
        else:
258 259
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
260
                self._is_collective = role_maker._is_collective
261 262
            else:
                raise ValueError(
263 264 265 266
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".format(
                        type(role_maker)
                    )
                )
267
        self._role_maker._generate_role()
268

269
        from paddle.distributed import fleet
270

271 272
        fleet.util._set_role_maker(self._role_maker)

273
        self.strategy_compiler = StrategyCompiler()
274 275

        if self._role_maker._is_non_distributed() and self._is_collective:
276 277
            if paddle.framework.core.is_compiled_with_cuda():
                gpus_num = paddle.framework.core.get_cuda_device_count()
278 279 280 281 282
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

283
        if in_dynamic_mode():
284
            if self.worker_num() == 1:
285 286 287
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
288
                return
289
            if parallel_helper._is_parallel_ctx_initialized():
R
Roc 已提交
290
                logger.warning(
291 292
                    "The dygraph parallel environment has been initialized."
                )
293
            else:
294 295
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
R
Roc 已提交
296
                    logger.warning(
297 298
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
299 300
                        "DistributedStrategy will not take effect here."
                    )
301 302
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
303 304
                        self._user_defined_strategy.nccl_comm_num
                    )
305
                paddle.distributed.init_parallel_env()
306

K
kuizhiqing 已提交
307
            # hybrid parallel not support for npu/xpu
308
            if not self._user_defined_strategy.heter_ccl_mode:
K
kuizhiqing 已提交
309 310 311 312
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
R
Roc 已提交
313
                    logger.warning(
K
kuizhiqing 已提交
314 315
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
316 317 318 319 320 321 322 323 324 325
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

326 327
            if tp._HYBRID_PARALLEL_GROUP is None:
                tp._CommunicateGroup()
W
WangXi 已提交
328 329
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
330 331 332 333 334 335 336
            cg.set_comm_group(
                'global',
                global_rank,
                global_world_size,
                global_ring_id,
                global_ranks,
            )
W
WangXi 已提交
337

Y
Yuang Liu 已提交
338 339 340
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
341
            # hybrid group
342 343
            if use_mp is False:
                return
Y
Yuang Liu 已提交
344 345 346 347 348 349 350 351

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
352 353 354
                tensor_parallel_configs = (
                    self._user_defined_strategy.tensor_parallel_configs
                )
355
                mp_degree_tensor_parallel = int(
356 357
                    tensor_parallel_configs['tensor_parallel_degree']
                )
Y
Yuang Liu 已提交
358 359 360

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
361

362 363 364 365 366
            mp_degree = (
                mp_degree_sharding
                if use_sharding
                else mp_degree_tensor_parallel
            )
W
WangXi 已提交
367 368 369 370 371 372 373 374

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
375 376
                    idx
                    for idx in global_ranks
W
WangXi 已提交
377 378
                    if idx // mp_degree == mp_group_id
                ]
379 380 381
                cg.set_comm_group(
                    'model', mp_rank, mp_degree, mp_ring_id, mp_group_ranks
                )
W
wuhuachaocoding 已提交
382
        return self
383 384

    def _init_hybrid_parallel_env(self):
385
        """initialize the hybrid environment"""
386 387 388 389
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
390
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
391 392 393

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
394 395 396
        assert (
            self.sharding_degree >= 0
        ), "sharding_degree should be greater or equal to 0"
397 398 399 400 401 402 403 404 405 406

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

407 408 409 410 411 412 413
        d_hybrid_degree = {
            "dp": ["data", self.dp_degree],
            "pp": ['pipe', self.pp_degree],
            "sharding": ['sharding', self.sharding_degree],
            "mp": ['model', self.mp_degree],
        }

414
        order = self._user_defined_strategy.hybrid_parallel_order
415
        if order[:].sort() != list(d_hybrid_degree.keys())[:].sort():
416 417 418
            raise AssertionError(
                'The order of hybrid_config setting is incorrect.'
            )
419 420 421 422 423 424 425 426

        hybrid_group_names = []
        dims = []
        for h_name in order:
            name, degree = d_hybrid_degree[h_name]
            hybrid_group_names.append(name)
            dims.append(degree)

427
        self._topology = tp.CommunicateTopology(
428
            hybrid_group_names=hybrid_group_names, dims=dims
429
        )
430 431 432

        self._hcg = tp.HybridCommunicateGroup(self._topology)

433
        if self.mp_degree > 1:
434 435 436
            tensor_parallel_configs = (
                self._user_defined_strategy.tensor_parallel_configs
            )
437 438 439 440 441 442
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

443 444 445 446 447 448 449 450
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

451 452 453 454 455 456 457
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
458

459 460 461 462 463 464 465 466
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

467
        """
468
        return self._role_maker._is_first_worker()
469 470 471 472 473 474 475

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
476 477 478 479

        Examples:

            .. code-block:: python
1
123malin 已提交
480

481 482 483 484
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

485
        """
486
        return self._role_maker._worker_index()
487 488 489 490 491 492 493

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
494

495
        Examples:
1
123malin 已提交
496

497 498 499 500 501 502
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

503
        """
504
        return self._role_maker._worker_num()
505

506 507 508 509 510 511 512 513 514 515 516 517
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

518 519 520 521 522 523 524
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
525 526

        Examples:
1
123malin 已提交
527

528 529 530 531 532 533
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

534
        """
535
        return self._role_maker._is_worker()
536

537 538 539
    def is_coordinator(self):
        return self._role_maker._is_coordinator()

540 541
    def worker_endpoints(self, to_string=False):
        """
542
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
543 544 545

        Returns:
            list/string: server endpoints
546 547

        Examples:
1
123malin 已提交
548

549 550 551 552 553 554
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

555 556
        """
        if to_string:
557
            return ",".join(self._role_maker._get_trainer_endpoints())
558
        else:
559
            return self._role_maker._get_trainer_endpoints()
560 561 562 563 564 565 566

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
567 568

        Examples:
1
123malin 已提交
569

570
            .. code-block:: python
1
123malin 已提交
571 572 573 574

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
575
        """
576
        return len(self._role_maker._get_pserver_endpoints())
577 578 579 580 581 582 583

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
584 585

        Examples:
1
123malin 已提交
586

587 588 589 590 591 592
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

593
        """
594
        return self._role_maker._server_index()
595 596 597 598 599 600 601

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
602 603

        Examples:
1
123malin 已提交
604

605 606 607 608 609 610
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

611
        """
612

613
        if to_string:
614
            return ",".join(self._role_maker._get_pserver_endpoints())
615
        else:
616
            return self._role_maker._get_pserver_endpoints()
617 618 619 620 621 622 623 624

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
625 626 627 628

        Examples:

            .. code-block:: python
1
123malin 已提交
629

630 631 632 633
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

634
        """
635 636
        return self._role_maker._is_server()

637 638
    def barrier_worker(self):
        """
639 640 641 642
        barrier all workers

        Returns:
            None
643
        """
644
        self._role_maker._barrier("worker")
645

646
    @is_non_distributed_check
647
    @inited_runtime_handler
648
    def init_worker(self, scopes=None):
649
        """
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

668
        """
669
        self._runtime_handle._init_worker(scopes)
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    @is_non_distributed_check
    @inited_runtime_handler
    def init_coordinator(self, scopes=None):
        """
        initialize coordinator node
        """
        self._runtime_handle._init_coordinator(scopes)

    def make_fl_strategy(self):
        self._runtime_handle._make_fl_strategy()

    @is_non_distributed_check
    @inited_runtime_handler
    def get_fl_client(self):
        """
        get worker(training node) ptr
        """
        return self._runtime_handle._worker

690
    @is_non_distributed_check
691
    @inited_runtime_handler
692
    def init_server(self, *args, **kwargs):
693
        """
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

713
        """
714
        self._runtime_handle._init_server(*args, **kwargs)
715

Z
zmxdream 已提交
716 717
    @is_non_distributed_check
    @inited_runtime_handler
T
Thunderbrook 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

736
                fleet.load_model("path", mode=0)
T
Thunderbrook 已提交
737 738

        """
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        self._runtime_handle._load_persistables(path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_one_table(self, table_id, path, mode):
        """
        load fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_one_table(0, "path", mode=0)

        """
        self._runtime_handle._load_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_inference_model(self, path, mode):
        """
        load fleet inference model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_inference_model("path", mode=1)

        """
        self._runtime_handle._load_inference_model(path, mode)
T
Thunderbrook 已提交
790

791
    @is_non_distributed_check
792
    @inited_runtime_handler
793 794
    def run_server(self):
        """
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

813 814 815
        """
        self._runtime_handle._run_server()

816
    @is_non_distributed_check
817
    @inited_runtime_handler
818 819
    def stop_worker(self):
        """
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

837 838 839
        """
        self._runtime_handle._stop_worker()

Z
zmxdream 已提交
840 841
    @is_non_distributed_check
    @inited_runtime_handler
T
tangwei12 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

876 877 878
            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0
            )
T
tangwei12 已提交
879 880 881 882
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
883 884 885
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode
            )
T
tangwei12 已提交
886

Z
zmxdream 已提交
887 888
    @is_non_distributed_check
    @inited_runtime_handler
889 890 891 892 893 894 895 896 897 898
    def save_inference_model(
        self,
        executor,
        dirname,
        feeded_var_names,
        target_vars,
        main_program=None,
        export_for_deployment=True,
        mode=0,
    ):
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

919 920 921 922 923 924 925 926 927
        self._runtime_handle._save_inference_model(
            executor,
            dirname,
            feeded_var_names,
            target_vars,
            main_program,
            export_for_deployment,
            mode,
        )
928

Z
zmxdream 已提交
929 930
    @is_non_distributed_check
    @inited_runtime_handler
931
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
932 933
        """

1
123malin 已提交
934
        saves all persistable tensors from :code:`main_program` to
935 936
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
937 938
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
939 940 941
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
942
            executor(Executor): The executor to run for saving persistable tensors.
943 944 945 946 947
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
948
            main_program(Program, optional): The program whose persistbale tensors will
949 950 951 952 953 954 955 956 957 958
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
959 960
                import paddle
                paddle.enable_static()
961 962 963 964 965 966 967
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
968 969
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
970 971

        """
972 973 974
        self._runtime_handle._save_persistables(
            executor, dirname, main_program, mode
        )
975

Z
zhaocaibei123 已提交
976 977 978 979 980
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_model(self, dirname, **configs):
        return self._runtime_handle._save_cache_model(dirname, **configs)

981 982 983 984 985
    @is_non_distributed_check
    @inited_runtime_handler
    def check_save_pre_patch_done(self):
        return self._runtime_handle._check_save_pre_patch_done()

L
lxsbupt 已提交
986 987 988 989 990 991 992 993 994
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_table(
        self, table_id, pass_id, mem_cache_key_threshold=4000000000
    ):
        return self._runtime_handle._save_cache_table(
            table_id, pass_id, mem_cache_key_threshold
        )

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    @is_non_distributed_check
    @inited_runtime_handler
    def save_one_table(self, table_id, path, mode):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_one_table(0, "path", mode=0)

        """
        self._runtime_handle._save_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
1022 1023 1024
    def save_dense_params(
        self, executor, dirname, scope, program, var_names=None
    ):
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                import paddle
1039 1040
                place = paddle.CPUPlace()
                exe =  paddle.static.Executor(place)
1041 1042 1043 1044 1045 1046 1047

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())

        """
1048 1049 1050
        self._runtime_handle._save_dense_params(
            executor, dirname, scope, program, var_names
        )
1051

L
lxsbupt 已提交
1052 1053
    @is_non_distributed_check
    @inited_runtime_handler
1054
    def shrink(self, threshold=None):
1055 1056
        self._runtime_handle._shrink(threshold)

1057
    def distributed_optimizer(self, optimizer, strategy=None):
1058
        """
1059 1060 1061 1062 1063 1064 1065
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
1066
            strategy(DistributedStrategy): Extra properties for distributed optimizer.
1067
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
1068 1069
                here is for compatibility. If the strategy in fleet.distributed_optimizer()
                is not None, then it will overwrite the DistributedStrategy in fleet.init(),
1070
                which will take effect in distributed training.
1071

1072
        Returns:
1073
            Fleet: instance of fleet.
1074 1075

        Examples:
1076

1077
            .. code-block:: python
1078

1
123malin 已提交
1079
                import paddle
1080
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1081
                fleet.init(is_collective=True)
1082 1083 1084 1085
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

1086 1087
        """
        self.user_defined_optimizer = optimizer
1088

1089
        if strategy is not None:
T
tangwei12 已提交
1090
            if self._is_collective:
R
Roc 已提交
1091
                logger.warning(
T
tangwei12 已提交
1092 1093 1094 1095
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
1096 1097
                    "which will take effect in distributed training."
                )
1098
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
1099 1100

        self._context = {}
S
ShenLiang 已提交
1101

1102 1103
        return self

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

1116 1117 1118
        assert (
            amp_optimizer is not None
        ), "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
1119 1120 1121
        return amp_optimizer

    def get_loss_scaling(self):
1122
        """Return the real-time loss scaling factor."""
1123 1124 1125
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

1126 1127 1128
    def amp_init(
        self, place, scope=None, test_program=None, use_fp16_test=False
    ):
H
huangxu96 已提交
1129 1130
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
1131

H
huangxu96 已提交
1132
        Args:
1133
            place(CUDAPlace): place is used to initialize
H
huangxu96 已提交
1134 1135 1136 1137
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
1138

H
huangxu96 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
1159
                    # or the slow convergence in a way.
H
huangxu96 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
1179

H
huangxu96 已提交
1180
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
1181
                    run_example_code()
H
huangxu96 已提交
1182
        """
1183
        amp_optimizer = self._get_amp_optimizer()
1184
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1185

D
Dong Daxiang 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1213 1214 1215
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1216 1217 1218 1219
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1220
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1221 1222 1223
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1224
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1225 1226
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1227
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1228 1229 1230 1231
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1232
            by minimize and a list of (param, grad) tensor pairs, param is
1233
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1234 1235
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1236 1237 1238
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1239

1240
            .. code-block:: python
1241

1242
                import paddle
1
123malin 已提交
1243
                paddle.enable_static()
1244
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1256

1
123malin 已提交
1257
                fleet.init(is_collective=True)
1258 1259 1260 1261
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1262

1263
                # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX
1264 1265

        """
1266
        if not isinstance(loss, list):
1267 1268 1269
            return self._minimize_impl(
                loss, startup_program, parameter_list, no_grad_set
            )
1270
        else:
1271
            if (
1272
                in_dynamic_mode()
1273 1274 1275
                or self._role_maker._is_non_distributed()
                or self._is_collective
            ):
1276
                raise ValueError("loss can be list only in PS mode")
1277 1278 1279 1280 1281 1282 1283
            return self._minimize_losses_impl(
                loss, startup_program, parameter_list, no_grad_set
            )

    def _minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
D
Dong Daxiang 已提交
1284 1285
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
1286 1287
            self._user_defined_strategy
        )
1288
        if in_dynamic_mode():
1289 1290
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1291
            self._context = context
1292
            return target_opt.minimize(loss)
1293
        else:
1294 1295 1296 1297
            # cache original feed forward program
            self.origin_main_program = loss.block.program
            # add distributed attr
            if not hasattr(self.origin_main_program, "distributed_info_"):
1298
                self.origin_main_program.distributed_info_ = {}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
                self.origin_main_program.distributed_info_[
                    "dp_degree"
                ] = self._user_defined_strategy.sharding_configs["dp_degree"]
                self.origin_main_program.distributed_info_[
                    "mp_degree"
                ] = self._user_defined_strategy.sharding_configs["mp_degree"]
                self.origin_main_program.distributed_info_[
                    "pp_degree"
                ] = self._user_defined_strategy.sharding_configs["pp_degree"]
                self.origin_main_program.distributed_info_[
                    "sharding_degree"
                ] = self._user_defined_strategy.sharding_configs[
                    "sharding_degree"
                ]
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
            context["origin_main_program"] = self.origin_main_program
            context["origin_main_programs"] = [self.origin_main_program]
            context["loss"] = loss
            if startup_program is None:
                self.origin_startup_program = (
                    paddle.static.default_startup_program().clone(
                        for_test=False
                    )
                )
                startup_program = paddle.static.default_startup_program()
            else:
                self.origin_startup_program = startup_program.clone(
                    for_test=False
                )
1328

1329 1330 1331
            context["origin_startup_program"] = startup_program
            context["origin_startup_programs"] = [startup_program]
            context["role_maker"] = self._role_maker
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
            # Use the auto-parallel's routines instead
            if (
                self._user_defined_strategy.semi_auto
                or self._user_defined_strategy.auto_search
            ):
                from ..auto_parallel.parallelizer import AutoParallelizer

                auto_parallelizer = AutoParallelizer(self)
                (
                    optimize_ops,
                    params_grads,
                    dist_startup_prog,
                    dist_main_prog,
                ) = auto_parallelizer.parallelize(
                    loss, startup_program, parameter_list, no_grad_set
                )
1349

1350 1351 1352 1353 1354 1355
                return (
                    optimize_ops,
                    params_grads,
                    dist_startup_prog,
                    dist_main_prog,
                )
L
lxsbupt 已提交
1356

1357 1358
            context["user_defined_strategy"] = copy.deepcopy(
                self._user_defined_strategy
L
lxsbupt 已提交
1359
            )
1360 1361
            copy_user_defined_strategy = copy.deepcopy(
                self._user_defined_strategy
1362
            )
L
lxsbupt 已提交
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            can_not_apply_optimizer_list = []
            # fix set collective and fleet ps gpu error
            if (
                self._is_collective
                and len(self._user_defined_strategy.sparse_table_configs) > 0
            ):
                context["use_fleet_ps"] = True
                from .meta_optimizers import ParameterServerOptimizer

                meta_optimizer = ParameterServerOptimizer(
L
lxsbupt 已提交
1374 1375
                    self.user_defined_optimizer
                )
1376 1377 1378 1379 1380 1381 1382
                meta_optimizer._set_basic_info(
                    loss,
                    self._role_maker,
                    self.user_defined_optimizer,
                    copy_user_defined_strategy,
                )
                can_not_apply_optimizer_list.append(meta_optimizer)
1383 1384 1385 1386

                # meaningless, just for compatibility with other code
                graph_optimizer = None

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
            else:
                # compile time
                distributed_optimizer_list = (
                    MetaOptimizerFactory()._get_valid_meta_optimizers(
                        self.user_defined_optimizer
                    )
                )
                # trigger the auto-parallel in very strict condition
                # strategy = DistributedStrategy()
                # strategy.auto = True
                # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
                # optimizer = fleet.distributed_optimizer(optimizer, strategy)
                if copy_user_defined_strategy._is_strict_auto():
                    # turn on all the strategy for each optimizer
                    for opt in distributed_optimizer_list:
                        opt._enable_strategy(
                            copy_user_defined_strategy, context
                        )

                valid_optimizer_list = []
                valid_graph_optimizer_list = []
                # recall meta optimizers for ranking
                for opt in distributed_optimizer_list:
                    opt._set_basic_info(
                        loss,
                        self._role_maker,
                        self.user_defined_optimizer,
                        copy_user_defined_strategy,
                    )
                    if opt._can_apply() and not opt._is_graph_out():
                        valid_optimizer_list.append(opt)
                    elif opt._can_apply() and opt._is_graph_out():
                        valid_graph_optimizer_list.append(opt)
                    else:
                        can_not_apply_optimizer_list.append(opt)
                # combine recalled meta optimizers to be a valid meta optimizer
                (
                    meta_optimizer,
                    graph_optimizer,
                ) = self.strategy_compiler.generate_optimizer(
                    loss,
                    self._role_maker,
                    self.user_defined_optimizer,
                    copy_user_defined_strategy,
                    valid_optimizer_list,
                    valid_graph_optimizer_list,
                )

            valid_strategy = self.strategy_compiler._get_valid_strategy(
                copy_user_defined_strategy, can_not_apply_optimizer_list
L
lxsbupt 已提交
1437
            )
D
Dong Daxiang 已提交
1438

1439 1440 1441 1442 1443 1444
            context["valid_strategy"] = copy.deepcopy(valid_strategy)
            logger.debug("valid_strategy: " + str(context["valid_strategy"]))
            logger.debug(
                "user_defined_strategy: "
                + str(context["user_defined_strategy"])
            )
D
Dong Daxiang 已提交
1445

1446 1447 1448 1449
            applied_meta_list = self.strategy_compiler._get_applied_meta_list()
            applied_graph_list = (
                self.strategy_compiler._get_applied_graph_list()
            )
1450

1451 1452
            context['applied_meta_list'] = applied_meta_list
            context['applied_graph_list'] = applied_graph_list
1453

1454
            self._context = context
1455

1456 1457
            self.valid_strategy = valid_strategy
            self.valid_strategy._enable_env()
1458

1459 1460
            optimize_ops = []
            params_grads = []
D
Dong Daxiang 已提交
1461

1462 1463 1464 1465 1466 1467 1468 1469
            if (
                self._role_maker._is_non_distributed()
                and not self._is_collective
            ):
                if self._runtime_handle is None:
                    self._runtime_handle = RuntimeFactory()._create_runtime(
                        context
                    )
1470

1471 1472
                compiled_program = compiler.CompiledProgram(
                    self.origin_main_program
1473
                )
1474 1475 1476 1477 1478 1479 1480
                loss.block.program._graph = compiled_program
                return self.user_defined_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
            if meta_optimizer:
                logger.debug(
                    "before minimize program id: " + str(id(loss.block.program))
                )
                optimize_ops, params_grads = meta_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
                logger.debug(
                    "after minimize program id: " + str(id(loss.block.program))
                )
                default_program = paddle.static.default_main_program()
                logger.debug("default program id: " + str(id(default_program)))

                if id(default_program) != id(loss.block.program):
                    paddle.framework.switch_main_program(loss.block.program)
                logger.debug(
                    "default program id after switch: "
                    + str(id(default_program))
                )
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
            else:
                (
                    optimize_ops,
                    params_grads,
                ) = self.user_defined_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
1515

1516 1517
            context["program_optimize_ops"] = optimize_ops
            context["program_params_grads"] = params_grads
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
            if graph_optimizer:
                logger.debug(
                    "before graph minimize program id: "
                    + str(id(loss.block.program))
                )
                optimize_ops, params_grads = graph_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
                # since we do not encourage users to use graph operations
                # if a graph optimizer takes effect, mostly
                # optimizers_ops and params_grads are None
                # i.e. users can not modify current computation graph anymore
                context["graph_optimize_ops"] = optimize_ops
                context["graph_optimize_grads"] = params_grads
1536
            elif loss.block.program._pass_applied is None:
1537
                apply_ir_passes(loss.block.program, startup_program, self)
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            if not self._role_maker._is_heter_parameter_server_mode:
                program = paddle.static.default_main_program()
                opt_info = (
                    {} if program._fleet_opt is None else program._fleet_opt
                )
                opt_info["mpi_size"] = self.worker_num()
                opt_info["mpi_rank"] = self.worker_index()
                for (
                    k,
                    v,
                ) in self._user_defined_strategy.trainer_desc_configs.items():
                    if v or k not in opt_info:
                        opt_info[k] = v
                program._fleet_opt = opt_info
1553

1554 1555
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)
1556

1557
            from paddle.distributed import fleet
1558

1559
            fleet.util._set_strategy(context["valid_strategy"])
1560

1561
            return optimize_ops, params_grads
1562

1563 1564 1565 1566 1567 1568 1569
    def _minimize_losses_impl(
        self,
        losses,
        startup_programs=None,
        parameter_list=None,
        no_grad_set=None,
    ):
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        context = {}

        # cache original feed forward program
        self.origin_main_program = losses[0].block.program
        context["origin_main_program"] = self.origin_main_program
        context["origin_main_programs"] = []
        for loss in losses:
            context["origin_main_programs"].append(loss.block.program)
        context["loss"] = losses

        if startup_programs is None:
            if len(losses) == 1:
                startup_programs = [paddle.static.default_startup_program()]
            else:
                raise ValueError(
1585 1586
                    "startup_program can't be None when loss is list."
                )
1587 1588 1589 1590 1591 1592 1593 1594 1595
        self.origin_startup_program = startup_programs[0].clone(for_test=False)
        context["origin_startup_program"] = startup_programs[0]
        context["origin_startup_programs"] = []
        for program in startup_programs:
            context["origin_startup_programs"].append(program)

        context["role_maker"] = self._role_maker

        context["user_defined_strategy"] = copy.deepcopy(
1596 1597
            self._user_defined_strategy
        )
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

        context["valid_strategy"] = copy.deepcopy(self._user_defined_strategy)

        self._context = context

        self.valid_strategy = context["valid_strategy"]
        self.valid_strategy._enable_env()

        optimize_ops = []
        params_grads = []

W
wuhuachaocoding 已提交
1609
        from .meta_optimizers import ParameterServerOptimizer
1610

1611
        ps_optimizer = ParameterServerOptimizer(self.user_defined_optimizer)
1612 1613 1614 1615 1616 1617
        ps_optimizer._set_basic_info(
            losses,
            self._role_maker,
            self.user_defined_optimizer,
            self._user_defined_strategy,
        )
1618
        optimize_ops, params_grads = ps_optimizer.minimize_losses_impl(
1619 1620
            losses, startup_programs, parameter_list, no_grad_set=no_grad_set
        )
1621 1622 1623 1624

        # default_program = paddle.static.default_main_program()

        # if id(default_program) != id(losses[0].block.program):
1625
        #     paddle.framework.switch_main_program(losses[0].block.program)
1626 1627 1628 1629 1630 1631 1632

        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads

        for loss in losses:
            program = loss.block.program
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
1633 1634
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
1635 1636 1637 1638
            for (
                k,
                v,
            ) in self._user_defined_strategy.trainer_desc_configs.items():
1639
                if v or k not in opt_info:
1640
                    opt_info[k] = v
1641
            program._fleet_opt = opt_info
1642 1643 1644 1645 1646
            logger.debug(
                "fleet base opt info: "
                + str(id(program))
                + str(program._fleet_opt)
            )
1647

1648
        if self._runtime_handle is None:
1649
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1650

1651
        from paddle.distributed import fleet
1652

1653
        fleet.util._set_strategy(context["valid_strategy"])
1654 1655

        return optimize_ops, params_grads