tensor_util.h 18.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/eigen.h"
S
Steffy-zxf 已提交
26
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/tensor.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
36

37 38
#include "paddle/pten/core/dense_tensor.h"

D
dzhwinter 已提交
39 40 41
namespace paddle {
namespace framework {

42 43 44
std::ostream& operator<<(std::ostream& os, const LoD& lod);
std::ostream& operator<<(std::ostream& os, const Tensor& t);

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

S
Steffy-zxf 已提交
65 66 67 68 69 70 71 72
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);

C
chengduo 已提交
73 74 75 76 77 78
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
W
wanghuancoder 已提交
79 80
class Tensor;

Y
Yi Wang 已提交
81
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
82
                const platform::DeviceContext& ctx, Tensor* dst);
83 84
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, pten::DenseTensor* dst);
C
chengduo 已提交
85 86 87 88 89 90 91 92

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
93 94
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
95 96
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                pten::DenseTensor* dst);
C
chengduo 已提交
97

F
fengjiayi 已提交
98 99
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
100

Y
Yi Wang 已提交
101 102 103 104 105
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
106

Y
Yi Wang 已提交
107 108 109 110 111
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
112

113
// copy the result bool to cpu
Y
Yi Wang 已提交
114 115
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
116 117 118 119 120 121
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
122

Y
Yi Wang 已提交
123 124 125 126
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
T
tangwei12 已提交
127 128 129
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);
D
dzhwinter 已提交
130

J
Jack Zhou 已提交
131 132 133 134 135 136 137
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
138 139 140
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
141 142 143
//
// The implementation of template functions.
//
D
dzhwinter 已提交
144

145 146 147 148 149 150 151 152 153 154 155
template <typename T>
void TensorFromArray(const T* src, const size_t& array_size,
                     const platform::DeviceContext& ctx, Tensor* dst) {
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
156 157
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
158
  }
159
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
160 161
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
162 163
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
164 165 166
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
189
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
190 191 192 193 194
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
195
}
196

D
dzhwinter 已提交
197
template <typename T>
Y
Yi Wang 已提交
198 199
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
200 201 202 203 204 205 206 207
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
208 209
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
D
dzhwinter 已提交
210
  }
211
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
212 213
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
214 215
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
D
dzhwinter 已提交
216 217 218
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
219
#ifdef PADDLE_WITH_ASCEND_CL
220 221 222 223 224 225
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
226
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    //  1. vector -> npu pinned tensor
    Tensor npu_pinned_tensor(dst->type());
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
246
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
247 248 249
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
250 251
  }
#endif
F
fwenguang 已提交
252 253 254 255 256 257 258 259
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(dst_place)) {
    memory::Copy(
        BOOST_GET_CONST(platform::MLUPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
D
dzhwinter 已提交
260 261
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
                             const platform::DeviceContext& ctx, Tensor* dst) {
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 src_place, src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
        BOOST_GET_CONST(platform::CUDAPlace, dst_place), dst_ptr, src_place,
        src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
316
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
317 318 319
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
320 321 322 323 324
  }
#endif
  delete[] array;
}

D
dzhwinter 已提交
325
template <typename T>
Y
Yi Wang 已提交
326
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
327 328 329 330 331 332 333 334 335 336
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
354
template <typename T>
Y
Yi Wang 已提交
355 356
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
357 358 359 360 361 362 363 364
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
365
    memory::Copy(dst_place, dst_ptr,
366 367
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
D
dzhwinter 已提交
368
  }
369
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
370 371
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
372
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
373
        src_ptr, size,
D
dzhwinter 已提交
374 375 376
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
377 378 379 380 381 382 383
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src.place()), src_ptr,
                 size);
  }
#endif
384 385
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
386 387 388
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src.place()), src_ptr,
                 size, nullptr);
389 390
  }
#endif
F
fwenguang 已提交
391 392 393 394 395 396 397 398
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, BOOST_GET_CONST(platform::MLUPlace, src.place()),
        src_ptr, size,
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
D
dzhwinter 已提交
399 400
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr,
                 size);
  }
419
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
420 421 422 423 424 425 426
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, BOOST_GET_CONST(platform::CUDAPlace, src.place()),
        src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
427 428 429 430 431 432 433
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src.place()), src_ptr,
                 size);
  }
#endif
434 435
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
436 437 438
    memory::Copy(dst_place, dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src.place()), src_ptr,
                 size, nullptr);
439
  }
F
fwenguang 已提交
440 441 442 443 444 445 446 447
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, BOOST_GET_CONST(platform::MLUPlace, src.place()),
        src_ptr, size,
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
448 449 450 451 452 453 454
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
455
template <typename T>
Y
Yi Wang 已提交
456
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
457 458 459 460 461 462 463
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

464 465 466 467 468
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
469

470 471
  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);
D
dzhwinter 已提交
472
}
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

  memory::Copy(dst_place, dst_ptr,
               BOOST_GET_CONST(platform::CPUPlace, src.place()), src_ptr, size);

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
500 501
}  // namespace framework
}  // namespace paddle