tensor_util.cc 57.8 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

C
chengduoZH 已提交
15 16
#include <algorithm>
#include <limits>
C
chengduo 已提交
17
#include <memory>
18
#include <string>
C
chengduo 已提交
19
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
21

Y
yuyang18 已提交
22
#include "paddle/fluid/framework/data_type.h"
S
Steffy-zxf 已提交
23
#include "paddle/fluid/framework/tensor_util.h"
24
#include "paddle/fluid/platform/complex.h"
25
#include "paddle/fluid/platform/profiler.h"
26 27 28

#include "paddle/pten/core/dense_tensor.h"

29
#ifdef PADDLE_WITH_MKLDNN
30
#include "dnnl_debug.h"  // NOLINT
31
#endif
Y
Yang Yu 已提交
32 33 34

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
35

36 37 38
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    const platform::DeviceContext& ctx, TENSOR* dst) {
39 40
  if (&src == dst) {
    auto src_copy = src;
41
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
42 43 44
    return;
  }

M
minqiyang 已提交
45 46
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
47 48 49 50
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
51
  auto src_ptr = src.data();
52 53 54 55 56 57 58 59 60
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
          ? dst->mutable_data(dst_place, src.type(), src.memory_size())
          : dst->mutable_data(dst_place, src.type());
#else
Y
Yi Wang 已提交
61
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
62
#endif
63 64 65 66 67
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
68
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
69

70 71 72 73 74
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
                  : src.numel() * SizeOfType(src.type());
#else
Y
Yi Wang 已提交
75
  auto size = src.numel() * SizeOfType(src.type());
76
#endif
Y
Yi Wang 已提交
77 78

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
79 80
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
Y
Yi Wang 已提交
81
  }
J
jianghaicheng 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::IPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::IPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else if (platform::is_ipu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::IPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::IPUPlace, src_place), src_ptr, size);
  }
#endif

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
121 122 123 124 125 126 127 128 129 130 131 132
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
154
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
155 156 157
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
158 159 160 161 162 163 164 165 166 167 168 169 170 171
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 stream);
  }
W
WangXi 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
    auto src_npu_pinned_place =
        BOOST_GET_CONST(platform::NPUPinnedPlace, src_place);
    auto dst_npu_place = BOOST_GET_CONST(platform::NPUPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
    auto ctx_npu_place = BOOST_GET_CONST(platform::NPUPlace, ctx_place);
    PADDLE_ENFORCE_EQ(dst_npu_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
                          dst_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size,
                 stream);
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
    auto src_npu_place = BOOST_GET_CONST(platform::NPUPlace, src_place);
    auto dst_npu_pinned_place =
        BOOST_GET_CONST(platform::NPUPinnedPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
    auto ctx_npu_place = BOOST_GET_CONST(platform::NPUPlace, ctx_place);
    PADDLE_ENFORCE_EQ(src_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
                          src_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size,
                 stream);
  }
218 219 220 221 222
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
223
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
224 225 226 227 228 229
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
  }
230
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
231
           platform::is_cpu_place(dst_place)) {
232 233 234
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
235 236 237
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
238 239
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
240 241 242
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
243 244
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
Y
Yi Wang 已提交
245
    auto ctx_place = ctx.GetPlace();
246 247 248 249 250
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
251
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
252 253 254 255 256
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
                          src_gpu_place, ctx_gpu_place));
257
    auto stream =
F
fengjiayi 已提交
258
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
259
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
260 261 262
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
263 264
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
265
    auto ctx_place = ctx.GetPlace();
266 267 268 269 270
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
271
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
272 273 274 275 276
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
                          dst_gpu_place, ctx_gpu_place));
277
    auto stream =
F
fengjiayi 已提交
278
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
279
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
280 281 282
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cuda_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
                          src_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size,
                 stream);
303 304 305
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    auto src_cuda_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
                          dst_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size,
                 stream);
326 327 328
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
329 330
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
331
    auto ctx_place = ctx.GetPlace();
332 333 334 335 336
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
337
    auto stream =
F
fengjiayi 已提交
338
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
339 340 341 342 343 344 345
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
346
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
347
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
348
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
349 350 351
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
352 353
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
354 355
      }
    }
356 357
  }
  else {  // NOLINT
358 359
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
360 361
  }
#endif
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto src_mlu_place = BOOST_GET_CONST(platform::MLUPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_mlu_place = BOOST_GET_CONST(platform::MLUPlace, dst_place);
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    auto src_mlu_place = BOOST_GET_CONST(platform::MLUPlace, src_place);
    auto dst_mlu_place = BOOST_GET_CONST(platform::MLUPlace, dst_place);
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
392 393
}

394 395 396
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    TENSOR* dst) {
Y
Yi Wang 已提交
397 398
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
399 400
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
      platform::is_mlu_place(dst_place)) {
Y
Yi Wang 已提交
401
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
402 403
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
404
  }
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                pten::DenseTensor* dst) {
  TensorCopyImpl<pten::DenseTensor>(src, dst_place, dst);
}
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, pten::DenseTensor* dst) {
  TensorCopyImpl<pten::DenseTensor>(src, dst_place, ctx, dst);
Y
Yi Wang 已提交
423 424
}

F
fengjiayi 已提交
425 426
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
427 428 429 430 431 432
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
433 434
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
435 436 437
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
438 439 440
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
441
  auto src_place = src.place();
442
  auto src_ptr = src.data();
F
fengjiayi 已提交
443
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
444
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
445 446 447 448 449 450 451

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

F
fengjiayi 已提交
452 453
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
454 455
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
F
fengjiayi 已提交
456
  }
J
jianghaicheng 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::IPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_ipu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::IPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
471 472 473 474 475
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
J
jianghaicheng 已提交
476 477 478
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
479 480
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
J
jianghaicheng 已提交
481 482 483
  }
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
484 485 486 487 488 489 490
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
491 492 493 494 495 496 497 498
    platform::XPUPlace xpu_dst_place =
        BOOST_GET_CONST(platform::XPUPlace, dst_place);
    platform::XPUPlace xpu_src_place =
        BOOST_GET_CONST(platform::XPUPlace, src_place);
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
J
jianghaicheng 已提交
499 500
  }
  else {  // NOLINT
501 502 503 504
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
534
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
535 536 537 538 539 540
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
  }
541
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
542
           platform::is_cpu_place(dst_place)) {
543 544 545
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
546 547 548
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
549 550
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
551 552 553
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
554 555 556
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, src_place), src_ptr, size,
                 nullptr);
557 558 559
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
560 561
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
F
fengjiayi 已提交
562
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
563 564 565
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
566 567
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
568
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
569 570 571
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
572 573
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
574
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
575 576 577
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
578 579 580
    auto src_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
W
Wu Yi 已提交
581 582
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
583 584
  }
  else {  // NOLINT
585 586
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
587 588
  }
#endif
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::MLUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::MLUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::MLUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::MLUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
618 619
}

Y
Yang Yu 已提交
620 621 622 623 624 625 626 627 628 629 630 631
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
632
  void apply() const {
Y
Yang Yu 已提交
633 634
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
635
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
636 637 638 639 640 641 642
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
Y
Yu Yang 已提交
643 644
  VisitDataType(tensor.type(), AnyDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
Y
Yang Yu 已提交
645 646 647
}

template <typename Predicate>
648 649
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
650 651 652
  const framework::Tensor& tensor_;
  Predicate predicate_;

653 654 655 656 657 658 659 660 661 662 663 664 665
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

666
 public:
Y
Yang Yu 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

680 681 682 683 684
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
685 686 687 688 689 690 691
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
692 693
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
694
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
695 696
  }

697 698 699 700 701 702
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
703 704 705 706 707
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
708

709 710 711 712 713
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
714 715 716 717
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
718 719 720 721 722

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
723 724
};

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
746 747 748 749 750 751 752
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

753 754 755 756 757 758 759 760
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AllDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
inline void AllImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
  VisitDataType(tensor.type(), AllDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
}

template <typename Predicate>
class AllOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AllOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
inline void All(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
816
struct ContainsNANPredicate {
Y
Yang Yu 已提交
817 818 819
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
820
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
821 822 823 824
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
825 826
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
827 828 829
  return Any(tensor, predicate);
}

830 831 832 833 834 835
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
836 837 838 839 840 841
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
842
struct ContainsInfPredicate {
Y
Yang Yu 已提交
843 844 845
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
846
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
847 848 849 850
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
851 852
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
853 854 855
  return Any(tensor, predicate);
}

856 857 858 859 860 861
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
862 863 864 865 866 867
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

868 869 870 871 872 873 874 875 876 877
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

878
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
879
template <typename T>
J
Jack Zhou 已提交
880 881
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
882 883 884 885 886 887 888 889 890 891 892 893 894 895
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

896 897 898
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
899 900 901
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
902

903
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
904
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
905
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
906 907 908 909 910 911 912 913 914 915
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
916 917 918
#endif
  }

919 920 921 922
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
923 924 925 926
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

927
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
928 929 930 931 932 933 934 935
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
936 937 938 939
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
940 941 942 943 944 945 946 947
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
948
  }
949 950 951 952 953 954 955 956 957 958 959 960

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
961 962 963 964 965 966 967 968 969 970 971
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
972 973 974 975 976 977 978 979 980
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
981 982 983 984 985 986 987 988 989 990
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
Y
Yu Yang 已提交
991
    desc.set_data_type(tensor.type());
Y
Yi Wang 已提交
992 993 994 995 996 997 998 999 1000 1001
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
1002 1003
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

1004
    auto* data_ptr = tensor.data();
W
wanghuancoder 已提交
1005
    PADDLE_ENFORCE_LT(size, (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
1006 1007
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
1008
    if (platform::is_gpu_place(tensor.place())) {
1009
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
1019
                     BOOST_GET_CONST(platform::CUDAPlace, tensor.place()),
Y
Yi Wang 已提交
1020 1021 1022 1023 1024 1025 1026 1027
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
1028 1029
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     BOOST_GET_CONST(platform::XPUPlace, tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write);
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     BOOST_GET_CONST(platform::MLUPlace, tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write,
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     BOOST_GET_CONST(platform::NPUPlace, tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write,
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
Y
Yi Wang 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1112
  void apply() {
Y
Yi Wang 已提交
1113 1114 1115 1116 1117 1118 1119 1120
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
    tensor->Resize(framework::make_ddim(shape));
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
    auto ctx = platform::CPUDeviceContext();
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1152
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1153
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1154
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1155
        platform::is_npu_place(dev_ctx.GetPlace())) {
1156
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1157 1158
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
    defined(PADDLE_WITH_ASCEND_CL)
T
tangwei12 已提交
1159 1160 1161 1162 1163 1164 1165 1166
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(shape));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1167 1168 1169
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1170
#else
1171 1172 1173
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1174
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1175 1176
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1177 1178 1179
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1180 1181 1182
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1183
      }
T
tangwei12 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
1194 1195 1196 1197
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1198 1199 1200 1201 1202
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1203 1204 1205 1206 1207 1208 1209
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1210 1211 1212
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1213 1214 1215 1216 1217 1218 1219 1220
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
    auto ctx = platform::CPUDeviceContext();
Y
Yu Yang 已提交
1221
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1222
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1223
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1224
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1225
        platform::is_npu_place(dev_ctx.GetPlace())) {
1226
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1227 1228
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
    defined(PADDLE_WITH_ASCEND_CL)
Y
Yi Wang 已提交
1229 1230 1231 1232 1233
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1234
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1235 1236
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1237 1238 1239
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1240
#else
1241 1242 1243
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1244
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1245 1246
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1247 1248 1249
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1250 1251 1252
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1253
      }
Y
Yi Wang 已提交
1254 1255 1256 1257 1258
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1259
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1260 1261 1262 1263
    }
  }
}

6
633WHU 已提交
1264 1265 1266 1267
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
1268 1269 1270
  PADDLE_ENFORCE_LE(type.lanes, 1,
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1271 1272 1273 1274 1275 1276 1277

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1278 1279 1280
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1281 1282 1283 1284 1285 1286
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1287 1288 1289
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1290 1291 1292
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1293 1294 1295 1296 1297
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1298 1299 1300
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1301 1302 1303 1304 1305
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1316 1317 1318
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1319
    default:
1320 1321
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

  framework::DDim vddim = framework::make_ddim(vec);

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
  auto size = paddle::framework::product(vddim) * type.bits / 8;

S
Siming Dai 已提交
1342
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1343 1344
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1345
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1346
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1347
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1348
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1349
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1350
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1351 1352 1353 1354 1355 1356 1357
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
1358 1359 1360
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1361 1362
}

1363 1364 1365 1366 1367 1368
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1369 1370 1371 1372 1373
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1374
  os << "  - data: [";
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1389 1390 1391 1392 1393 1394
    }
  }
  os << "]";
  return os;
}

1395
template <>
1396
std::ostream& print_tensor<paddle::platform::complex<float>>(
1397
    std::ostream& os, const framework::Tensor& tensor) {
1398
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1399 1400 1401 1402
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1403
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1404
    for (int j = 1; j < element_num; ++j) {
1405 1406
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1407 1408 1409 1410 1411 1412 1413
    }
  }
  os << "]";
  return os;
}

template <>
1414
std::ostream& print_tensor<paddle::platform::complex<double>>(
1415
    std::ostream& os, const framework::Tensor& tensor) {
1416
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1417 1418 1419 1420
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1421
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1422
    for (int j = 1; j < element_num; ++j) {
1423 1424
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1425 1426 1427 1428 1429 1430
    }
  }
  os << "]";
  return os;
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  os << "{";
  for (auto& v : lod) {
    os << "{";
    bool is_first = true;
    for (auto& i : v) {
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
    }
    os << "}";
  }
  os << "}";

  return os;
}

1451
std::ostream& operator<<(std::ostream& os, const Tensor& t) {
1452 1453 1454 1455
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1456 1457 1458
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
  os << "  - layout: " << DataLayoutToString(t.layout()) << "\n";
1459

1460 1461 1462 1463 1464
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
  Tensor tensor;
  tensor.Resize(t.dims());
  if (platform::is_cpu_place(t.place())) {
    tensor.ShareDataWith(t);
  } else {
    platform::CPUPlace place;
    framework::TensorCopy(t, place, &tensor);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

#define PrintTensorCallback(cpp_type, proto_type) \
  do {                                            \
    if (tensor.type() == proto_type) {            \
1480
      os << "  - dtype: " << proto_type << "\n";  \
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
      print_tensor<cpp_type>(os, tensor);         \
      return os;                                  \
    }                                             \
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}

Y
Yang Yu 已提交
1491 1492
}  // namespace framework
}  // namespace paddle