blas_impl.hip.h 54.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
19 20
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/funcs/math_function.h"
21 22 23

DECLARE_bool(enable_cublas_tensor_op_math);

24
namespace phi {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
namespace funcs {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_sgemm(args...));
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_saxpy(args...));
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_sscal(args...));
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_scopy(args...));
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_sgemv(args...));
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_sgemm_strided_batched(args...));
  }

  // HIP not supportted, refer to the doc here:
  // https://github.com/ROCm-Developer-Tools/HIP/blob/roc-3.5.x/docs/markdown/CUBLAS_API_supported_by_HIP.md
  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
72
    PADDLE_THROW(phi::errors::Unimplemented(
73 74 75 76 77 78 79 80 81 82 83
        "cublasSgemmEx is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_strsm(args...));
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
84
    PADDLE_THROW(phi::errors::Unimplemented(
85 86 87 88 89
        "cublasSgetrfBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
90
    PADDLE_THROW(phi::errors::Unimplemented(
91 92 93 94 95
        "cublasSgetriBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
96
    PADDLE_THROW(phi::errors::Unimplemented(
97 98 99 100 101
        "cublasSmatinvBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
102
    PADDLE_THROW(phi::errors::Unimplemented(
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        "cublasStrsmBatched is not supported on HIP platform."));
  }
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_dgemm(args...));
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_daxpy(args...));
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_dscal(args...));
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_dcopy(args...));
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_dgemv(args...));
  }

  template <typename... ARGS>
  static void GEMM_STRIDED_BATCH(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_dgemm_strided_batched(args...));
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    PADDLE_THROW(
148
        phi::errors::Unimplemented("Currently there are not cublasDgemmEx."));
149 150 151 152 153 154 155 156 157 158
  }

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_dtrsm(args...));
  }

  template <typename... ARGS>
  static void GETRF_BATCH(ARGS... args) {
159
    PADDLE_THROW(phi::errors::Unimplemented(
160 161 162 163 164
        "cublasDgetrfBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void GETRI_BATCH(ARGS... args) {
165
    PADDLE_THROW(phi::errors::Unimplemented(
166 167 168 169 170
        "cublasDgetriBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void MATINV_BATCH(ARGS... args) {
171
    PADDLE_THROW(phi::errors::Unimplemented(
172 173 174 175 176
        "cublasDmatinvBatched is not supported on HIP platform."));
  }

  template <typename... ARGS>
  static void TRSM_BATCH(ARGS... args) {
177
    PADDLE_THROW(phi::errors::Unimplemented(
178 179 180 181 182
        "cublasDtrsmBatched is not supported on HIP platform."));
  }
};

template <>
183 184
struct CUBlas<phi::dtype::float16> {
  using float16 = phi::dtype::float16;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
                   const float16 *alpha,
                   const float16 *A,
                   int lda,
                   const float16 *B,
                   int ldb,
                   const float16 *beta,
                   float16 *C,
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::rocblas_hgemm(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_half *>(alpha),
        reinterpret_cast<const rocblas_half *>(A),
        lda,
        reinterpret_cast<const rocblas_half *>(B),
        ldb,
        reinterpret_cast<const rocblas_half *>(beta),
        reinterpret_cast<rocblas_half *>(C),
        ldc));
  }

  static void GEMM_STRIDED_BATCH(rocblas_handle handle,
                                 rocblas_operation transa,
                                 rocblas_operation transb,
                                 int m,
                                 int n,
                                 int k,
                                 const float16 *alpha,
                                 const float16 *A,
                                 int lda,
                                 long long int strideA,  // NOLINT
                                 const float16 *B,       // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const float16 *beta,
                                 float16 *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_hgemm_strided_batched(
            handle,
            transa,
            transb,
            m,
            n,
            k,
            reinterpret_cast<const rocblas_half *>(alpha),
            reinterpret_cast<const rocblas_half *>(A),
            lda,
            strideA,
            reinterpret_cast<const rocblas_half *>(B),
            ldb,
            strideB,
            reinterpret_cast<const rocblas_half *>(beta),
            reinterpret_cast<rocblas_half *>(C),
            ldc,
            strideC,
            batchCount));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
260
  static void GEMM_EX(phi::GPUContext *dev_ctx,
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::rocblas_gemm_ex(handle,
                                                     transa,
                                                     transb,
                                                     m,
                                                     n,
                                                     k,
                                                     alpha,
                                                     A,
                                                     Atype,
                                                     lda,
                                                     B,
                                                     Btype,
                                                     ldb,
                                                     beta,
                                                     C,
                                                     Ctype,
                                                     ldc,
                                                     C,
                                                     Ctype,
                                                     ldc,
                                                     computeType,
                                                     algo,
                                                     0,
                                                     0));
    });
  }
};

template <>
310
struct CUBlas<phi::dtype::complex<float>> {
311 312 313 314
  static void GEMV(rocblas_handle handle,
                   rocblas_operation transa,
                   int m,
                   int n,
315 316
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
317
                   int lda,
318
                   const phi::dtype::complex<float> *B,
319
                   int ldb,
320 321
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::rocblas_cgemv(
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc));
  }

  static void AXPY(rocblas_handle handle,
                   int n,
340 341
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *X,
342
                   const int incX,
343
                   phi::dtype::complex<float> *Y,
344 345 346 347 348 349 350 351 352 353 354
                   const int incY) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::rocblas_caxpy(
        handle,
        n,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(X),
        incX,
        reinterpret_cast<rocblas_float_complex *>(Y),
        incY));
  }

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  static void GEMM_STRIDED_BATCH(rocblas_handle handle,
                                 rocblas_operation transa,
                                 rocblas_operation transb,
                                 int m,
                                 int n,
                                 int k,
                                 const phi::dtype::complex<float> *alpha,
                                 const phi::dtype::complex<float> *A,
                                 int lda,
                                 long long int strideA,                // NOLINT
                                 const phi::dtype::complex<float> *B,  // NOLINT
                                 int ldb,
                                 long long int strideB,  // NOLINT
                                 const phi::dtype::complex<float> *beta,
                                 phi::dtype::complex<float> *C,
                                 int ldc,
                                 long long int strideC,  // NOLINT
                                 int batchCount) {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_cgemm_strided_batched(
            handle,
            transa,
            transb,
            m,
            n,
            k,
            reinterpret_cast<const rocblas_float_complex *>(alpha),
            reinterpret_cast<const rocblas_float_complex *>(A),
            lda,
            strideA,
            reinterpret_cast<const rocblas_float_complex *>(B),
            ldb,
            strideB,
            reinterpret_cast<const rocblas_float_complex *>(beta),
            reinterpret_cast<rocblas_float_complex *>(C),
            ldc,
            strideC,
            batchCount));
  }

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
401 402
                   const phi::dtype::complex<float> *alpha,
                   const phi::dtype::complex<float> *A,
403
                   int lda,
404
                   const phi::dtype::complex<float> *B,
405
                   int ldb,
406 407
                   const phi::dtype::complex<float> *beta,
                   phi::dtype::complex<float> *C,
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::rocblas_cgemm(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_float_complex *>(alpha),
        reinterpret_cast<const rocblas_float_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_float_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_float_complex *>(beta),
        reinterpret_cast<rocblas_float_complex *>(C),
        ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
429
  static void GEMM_EX(phi::GPUContext *dev_ctx,
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::rocblas_gemm_ex(handle,
                                                     transa,
                                                     transb,
                                                     m,
                                                     n,
                                                     k,
                                                     alpha,
                                                     A,
                                                     Atype,
                                                     lda,
                                                     B,
                                                     Btype,
                                                     ldb,
                                                     beta,
                                                     C,
                                                     Ctype,
                                                     ldc,
                                                     C,
                                                     Ctype,
                                                     ldc,
                                                     computeType,
                                                     algo,
                                                     0,
                                                     0));
    });
  }
};

template <>
479
struct CUBlas<phi::dtype::complex<double>> {
480 481 482 483
  static void GEMV(rocblas_handle handle,
                   rocblas_operation transa,
                   int m,
                   int n,
484 485
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
486
                   int lda,
487
                   const phi::dtype::complex<double> *B,
488
                   int ldb,
489 490
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::rocblas_zgemv(
        handle,
        transa,
        m,
        n,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc));
  }

  static void AXPY(rocblas_handle handle,
                   int n,
509 510
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *X,
511
                   const int incX,
512
                   phi::dtype::complex<double> *Y,
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
                   const int incY) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::rocblas_zaxpy(
        handle,
        n,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(X),
        incX,
        reinterpret_cast<rocblas_double_complex *>(Y),
        incY));
  }

  static void GEMM_STRIDED_BATCH(
      rocblas_handle handle,
      rocblas_operation transa,
      rocblas_operation transb,
      int m,
      int n,
      int k,
531 532
      const phi::dtype::complex<double> *alpha,
      const phi::dtype::complex<double> *A,
533
      int lda,
534 535
      long long int strideA,                 // NOLINT
      const phi::dtype::complex<double> *B,  // NOLINT
536 537
      int ldb,
      long long int strideB,  // NOLINT
538 539
      const phi::dtype::complex<double> *beta,
      phi::dtype::complex<double> *C,
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
      int ldc,
      long long int strideC,  // NOLINT
      int batchCount) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_zgemm_strided_batched(
            handle,
            transa,
            transb,
            m,
            n,
            k,
            reinterpret_cast<const rocblas_double_complex *>(alpha),
            reinterpret_cast<const rocblas_double_complex *>(A),
            lda,
            strideA,
            reinterpret_cast<const rocblas_double_complex *>(B),
            ldb,
            strideB,
            reinterpret_cast<const rocblas_double_complex *>(beta),
            reinterpret_cast<rocblas_double_complex *>(C),
            ldc,
            strideC,
            batchCount));
  }

  static void GEMM(rocblas_handle handle,
                   rocblas_operation transa,
                   rocblas_operation transb,
                   int m,
                   int n,
                   int k,
571 572
                   const phi::dtype::complex<double> *alpha,
                   const phi::dtype::complex<double> *A,
573
                   int lda,
574
                   const phi::dtype::complex<double> *B,
575
                   int ldb,
576 577
                   const phi::dtype::complex<double> *beta,
                   phi::dtype::complex<double> *C,
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
                   int ldc) {
    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::rocblas_zgemm(
        handle,
        transa,
        transb,
        m,
        n,
        k,
        reinterpret_cast<const rocblas_double_complex *>(alpha),
        reinterpret_cast<const rocblas_double_complex *>(A),
        lda,
        reinterpret_cast<const rocblas_double_complex *>(B),
        ldb,
        reinterpret_cast<const rocblas_double_complex *>(beta),
        reinterpret_cast<rocblas_double_complex *>(C),
        ldc));
  }

  // NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
  // https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
  template <typename... ARGS>
599
  static void GEMM_EX(phi::GPUContext *dev_ctx,
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
                      rocblas_operation transa,
                      rocblas_operation transb,
                      int m,
                      int n,
                      int k,
                      const void *alpha,
                      const void *A,
                      rocblas_datatype Atype,
                      int lda,
                      const void *B,
                      rocblas_datatype Btype,
                      int ldb,
                      const void *beta,
                      void *C,
                      rocblas_datatype Ctype,
                      int ldc,
                      rocblas_datatype computeType) {
    rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
    dev_ctx->TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          paddle::platform::dynload::rocblas_gemm_ex(handle,
                                                     transa,
                                                     transb,
                                                     m,
                                                     n,
                                                     k,
                                                     alpha,
                                                     A,
                                                     Atype,
                                                     lda,
                                                     B,
                                                     Btype,
                                                     ldb,
                                                     beta,
                                                     C,
                                                     Ctype,
                                                     ldc,
                                                     C,
                                                     Ctype,
                                                     ldc,
                                                     computeType,
                                                     algo,
                                                     0,
                                                     0));
    });
  }
};

template <>
template <typename T>
650 651 652 653 654 655 656 657 658 659
void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                 CBLAS_TRANSPOSE transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM(handle,
                    cuTransB,
                    cuTransA,
                    N,
                    M,
                    K,
                    &alpha,
                    B,
                    ldb,
                    A,
                    lda,
                    &beta,
                    C,
                    N);
  });
}

template <>
template <>
690 691 692 693 694 695 696 697 698 699
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
715
      phi::errors::InvalidArgument(
716 717 718 719 720 721 722
          "cublas fp16 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::float16>::GEMM_EX(&cuda_ctx,
                                       cuTransB,
                                       cuTransA,
                                       N,
                                       M,
                                       K,
                                       &h_alpha,
                                       B,
                                       rocblas_datatype_f16_r,
                                       ldb,
                                       A,
                                       rocblas_datatype_f16_r,
                                       lda,
                                       &h_beta,
                                       C,
                                       rocblas_datatype_f16_r,
                                       N,
                                       rocblas_datatype_f32_r);
742 743 744 745
}

template <>
template <>
746 747 748 749 750 751 752 753 754 755
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
756 757 758 759 760 761 762 763 764 765 766 767 768 769
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  // TODO(zhiqiu): 80 has the same meaning for rocm and cuda?
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      80,
770
      phi::errors::InvalidArgument(
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
          "rocblas fp16 gemm requires GPU compute capability >= 80,"
          "but received %d",
          context_.GetComputeCapability()));

  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);
  rocblas_gemm_algo algo = rocblas_gemm_algo_standard;

  context_.TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_gemm_ex(handle,
                                                   cuTransB,
                                                   cuTransA,
                                                   N,
                                                   M,
                                                   K,
                                                   &h_alpha,
                                                   B,
                                                   rocblas_datatype_bf16_r,
                                                   ldb,
                                                   A,
                                                   rocblas_datatype_bf16_r,
                                                   lda,
                                                   &h_beta,
                                                   C,
                                                   rocblas_datatype_bf16_r,
                                                   N,
                                                   C,
                                                   rocblas_datatype_bf16_r,
                                                   N,
                                                   rocblas_datatype_f32_r,
                                                   algo,
                                                   0,
                                                   0));
  });
}

template <>
template <>
810 811 812 813 814
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
815 816 817 818 819
                                        phi::dtype::complex<float> alpha,
                                        const phi::dtype::complex<float> *A,
                                        const phi::dtype::complex<float> *B,
                                        phi::dtype::complex<float> beta,
                                        phi::dtype::complex<float> *C) const {
820 821 822 823 824 825 826 827 828 829
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
830 831

  // TODO(kexinzhao): add processing code for compute capability < 53 case
832 833
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
834
      53,
835
      phi::errors::InvalidArgument(
836
          "cublas complex64 gemm requires GPU compute capability >= 53,"
837 838 839
          "but received %d",
          context_.GetComputeCapability()));

840 841 842
  thrust::complex<float> c_alpha =
      thrust::complex<float>(alpha.real, alpha.imag);
  thrust::complex<float> c_beta = thrust::complex<float>(beta.real, beta.imag);
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<float>>::GEMM_EX(&cuda_ctx,
                                              cuTransB,
                                              cuTransA,
                                              N,
                                              M,
                                              K,
                                              &c_alpha,
                                              B,
                                              rocblas_datatype_f32_c,
                                              ldb,
                                              A,
                                              rocblas_datatype_f32_c,
                                              lda,
                                              &c_beta,
                                              C,
                                              rocblas_datatype_f32_c,
                                              N,
                                              rocblas_datatype_f32_c);
863 864 865 866
}

template <>
template <>
867 868 869 870 871 872 873 874 875 876
inline void Blas<phi::GPUContext>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::complex<double> alpha,
                                        const phi::dtype::complex<double> *A,
                                        const phi::dtype::complex<double> *B,
                                        phi::dtype::complex<double> beta,
                                        phi::dtype::complex<double> *C) const {
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(
      context_.GetComputeCapability(),
      53,
892
      phi::errors::InvalidArgument(
893 894 895 896 897 898 899 900 901
          "cublas complex128 gemm requires GPU compute capability >= 53,"
          "but received %d",
          context_.GetComputeCapability()));

  thrust::complex<double> c_alpha =
      thrust::complex<double>(alpha.real, alpha.imag);
  thrust::complex<double> c_beta =
      thrust::complex<double>(beta.real, beta.imag);

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
  auto &cuda_ctx = const_cast<phi::GPUContext &>(context_);
  CUBlas<phi::dtype::complex<double>>::GEMM_EX(&cuda_ctx,
                                               cuTransB,
                                               cuTransA,
                                               N,
                                               M,
                                               K,
                                               &c_alpha,
                                               B,
                                               rocblas_datatype_f64_c,
                                               ldb,
                                               A,
                                               rocblas_datatype_f64_c,
                                               lda,
                                               &c_beta,
                                               C,
                                               rocblas_datatype_f64_c,
                                               N,
                                               rocblas_datatype_f64_c);
921 922 923 924
}

template <>
template <typename T>
925 926 927 928 929 930 931 932 933 934 935 936 937
void Blas<phi::GPUContext>::GEMM(bool transA,
                                 bool transB,
                                 int M,
                                 int N,
                                 int K,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 const T *B,
                                 int ldb,
                                 T beta,
                                 T *C,
                                 int ldc) const {
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  rocblas_operation cuTransA =
      transA ? rocblas_operation_transpose : rocblas_operation_none;
  rocblas_operation cuTransB =
      transB ? rocblas_operation_transpose : rocblas_operation_none;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM(handle,
                    cuTransB,
                    cuTransA,
                    N,
                    M,
                    K,
                    &alpha,
                    B,
                    ldb,
                    A,
                    lda,
                    &beta,
                    C,
                    ldc);
  });
}

template <>
template <>
964 965 966 967 968 969 970 971 972 973 974 975 976
inline void Blas<phi::GPUContext>::GEMM(bool transA,
                                        bool transB,
                                        int M,
                                        int N,
                                        int K,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        int lda,
                                        const phi::dtype::float16 *B,
                                        int ldb,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C,
                                        int ldc) const {
977 978 979 980 981 982 983 984
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  rocblas_operation cuTransA =
      transA ? rocblas_operation_transpose : rocblas_operation_none;
  rocblas_operation cuTransB =
      transB ? rocblas_operation_transpose : rocblas_operation_none;

  context_.CublasCall([&](rocblas_handle handle) {
985 986 987 988 989 990 991 992 993 994 995 996 997 998
    CUBlas<phi::dtype::float16>::GEMM(handle,
                                      cuTransB,
                                      cuTransA,
                                      N,
                                      M,
                                      K,
                                      &alpha,
                                      B,
                                      ldb,
                                      A,
                                      lda,
                                      &beta,
                                      C,
                                      ldc);
999 1000 1001 1002 1003
  });
}

template <>
template <typename T>
1004
void Blas<phi::GPUContext>::AXPY(int n, T alpha, const T *x, T *y) const {
1005 1006 1007 1008 1009 1010 1011
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::AXPY(handle, n, &alpha, x, 1, y, 1);
  });
}

template <>
template <typename T>
1012
void Blas<phi::GPUContext>::SCAL(int n, const T alpha, T *x) const {
1013 1014 1015 1016 1017 1018
  context_.CublasCall(
      [&](rocblas_handle handle) { CUBlas<T>::SCAL(handle, n, &alpha, x, 1); });
}

template <>
template <typename T>
1019
void Blas<phi::GPUContext>::VCOPY(int n, const T *x, T *y) const {
1020 1021 1022 1023 1024 1025
  context_.CublasCall(
      [&](rocblas_handle handle) { CUBlas<T>::VCOPY(handle, n, x, 1, y, 1); });
}

template <>
template <typename T>
1026 1027 1028 1029 1030 1031 1032 1033
void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 const T *B,
                                 T beta,
                                 T *C) const {
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
  rocblas_operation cuTransA =
      !trans_a ? rocblas_operation_transpose : rocblas_operation_none;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMV(handle, cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1);
  });
}

template <>
template <>
1044 1045 1046 1047 1048 1049 1050 1051
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::float16 alpha,
                                        const phi::dtype::float16 *A,
                                        const phi::dtype::float16 *B,
                                        phi::dtype::float16 beta,
                                        phi::dtype::float16 *C) const {
1052 1053
  // Because cublas doesn't support half gemv, we use cublasHgemm to achieve it.
  if (trans_a) {
1054
    this->template GEMM<phi::dtype::float16>(
1055 1056
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
1057
    this->template GEMM<phi::dtype::float16>(
1058 1059 1060 1061 1062 1063
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}

template <>
template <>
1064 1065 1066 1067 1068 1069 1070 1071
inline void Blas<phi::GPUContext>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        phi::dtype::bfloat16 alpha,
                                        const phi::dtype::bfloat16 *A,
                                        const phi::dtype::bfloat16 *B,
                                        phi::dtype::bfloat16 beta,
                                        phi::dtype::bfloat16 *C) const {
1072 1073
  // Because rocblas doesn't support bfloat16 gemv, we use gemmex to achieve it.
  if (trans_a) {
1074
    this->template GEMM<phi::dtype::bfloat16>(
1075 1076
        CblasNoTrans, CblasNoTrans, 1, N, M, alpha, B, A, beta, C);
  } else {
1077
    this->template GEMM<phi::dtype::bfloat16>(
1078 1079 1080 1081 1082 1083
        CblasNoTrans, CblasNoTrans, M, 1, N, alpha, A, B, beta, C);
  }
}

template <>
template <typename T>
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        const T *B,
                                        T beta,
                                        T *C,
                                        int batchCount,
                                        int64_t strideA,
                                        int64_t strideB) const {
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  const int64_t strideC = M * N;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GEMM_STRIDED_BATCH(handle,
                                  cuTransB,
                                  cuTransA,
                                  N,
                                  M,
                                  K,
                                  &alpha,
                                  B,
                                  ldb,
                                  strideB,
                                  A,
                                  lda,
                                  strideA,
                                  &beta,
                                  C,
                                  ldc,
                                  strideC,
                                  batchCount);
  });
}

template <>
template <>
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 *A,
                                               const phi::dtype::bfloat16 *B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  const int64_t strideC = M * N;
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_operation cuTransB = (transB == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);
  rocblas_gemm_algo algo = rocblas_gemm_algo_standard;

  context_.TensorCoreCublasCallIfAvailable([&](rocblas_handle handle) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::rocblas_gemm_strided_batched_ex(
            handle,
            cuTransB,
            cuTransA,
            N,
            M,
            K,
            &h_alpha,
            B,
            rocblas_datatype_bf16_r,
            ldb,
            strideB,
            A,
            rocblas_datatype_bf16_r,
            lda,
            strideA,
            &h_beta,
            C,
            rocblas_datatype_bf16_r,
            ldc,
            strideC,
            C,
            rocblas_datatype_bf16_r,
            ldc,
            strideC,
            batchCount,
            rocblas_datatype_f32_r,
            algo,
            0,
            0));
  });
}

template <>
template <typename T>
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T **A,
                                        const T **B,
                                        T beta,
                                        T **C,
                                        int batchCount) const {
1208 1209 1210 1211 1212 1213 1214 1215
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::float16 alpha,
                                               const phi::dtype::float16 **A,
                                               const phi::dtype::float16 **B,
                                               phi::dtype::float16 beta,
                                               phi::dtype::float16 **C,
                                               int batchCount) const {
1227
  for (int k = 0; k < batchCount; ++k) {
1228
    this->template GEMM<phi::dtype::float16>(
1229 1230 1231 1232 1233 1234
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <>
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
inline void Blas<phi::GPUContext>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               phi::dtype::bfloat16 alpha,
                                               const phi::dtype::bfloat16 **A,
                                               const phi::dtype::bfloat16 **B,
                                               phi::dtype::bfloat16 beta,
                                               phi::dtype::bfloat16 **C,
                                               int batchCount) const {
1246
  for (int k = 0; k < batchCount; ++k) {
1247
    this->template GEMM<phi::dtype::bfloat16>(
1248 1249 1250 1251 1252 1253
        transA, transB, M, N, K, alpha, A[k], B[k], beta, C[k]);
  }
}

template <>
template <typename T>
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
void Blas<phi::GPUContext>::TRSM(CBLAS_SIDE side,
                                 CBLAS_UPLO uplo,
                                 CBLAS_TRANSPOSE transA,
                                 CBLAS_DIAG diag,
                                 int M,
                                 int N,
                                 T alpha,
                                 const T *A,
                                 int lda,
                                 T *B,
                                 int ldb) const {
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  rocblas_side cuSide =
      (side == CblasLeft) ? rocblas_side_right : rocblas_side_left;
  rocblas_fill cuUplo =
      (uplo == CblasLower) ? rocblas_fill_upper : rocblas_fill_lower;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_diagonal cuDiag =
      (diag == CblasUnit) ? rocblas_diagonal_unit : rocblas_diagonal_non_unit;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::TRSM(
        handle, cuSide, cuUplo, cuTransA, cuDiag, N, M, &alpha, A, lda, B, ldb);
  });
}

template <>
template <typename T>
1286
void Blas<phi::GPUContext>::BatchedGETRF(
1287 1288 1289 1290 1291 1292 1293 1294
    int n, T **a, int *ipiv, int *info, int batch_size) const {
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRF_BATCH(handle, n, a, n, ipiv, info, batch_size);
  });
}

template <>
template <typename T>
1295 1296 1297 1298 1299 1300
void Blas<phi::GPUContext>::BatchedGETRI(int n,
                                         const T **a,
                                         const int *ipiv,
                                         T **a_inv,
                                         int *info,
                                         int batch_size) const {
1301 1302 1303
  PADDLE_ENFORCE_NE(
      a_inv,
      a,
1304
      phi::errors::InvalidArgument(
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
          "cuBLAS fuction 'cublas<S/D>getrfBatched' cannot be executed "
          "in-place. The memory space of output matrix (address: %p) cannot "
          "overlap memory space of input matrix (address: %p).",
          a_inv,
          a));
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRI_BATCH(handle, n, a, n, ipiv, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1317
void Blas<phi::GPUContext>::BatchedMatInv(
1318 1319 1320 1321 1322 1323 1324 1325
    int n, const T **a, T **a_inv, int *info, int batch_size) const {
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::MATINV_BATCH(handle, n, a, n, a_inv, n, info, batch_size);
  });
}

template <>
template <typename T>
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
void Blas<phi::GPUContext>::BatchedGETRS(CBLAS_TRANSPOSE trans,
                                         int n,
                                         int nrhs,
                                         const T **a,
                                         int lda,
                                         int *ipiv,
                                         T **b,
                                         int ldb,
                                         int *info,
                                         int batch_size) const {
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  rocblas_operation cuTrans = (trans == CblasNoTrans)
                                  ? rocblas_operation_none
                                  : rocblas_operation_transpose;
  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::GETRS_BATCH(
        handle, cuTrans, n, nrhs, a, lda, ipiv, b, ldb, info, batch_size);
  });
}

template <>
template <typename T>
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
void Blas<phi::GPUContext>::BatchedTRSM(CBLAS_SIDE side,
                                        CBLAS_UPLO uplo,
                                        CBLAS_TRANSPOSE transA,
                                        CBLAS_DIAG diag,
                                        int M,
                                        int N,
                                        T alpha,
                                        const T **A,
                                        int lda,
                                        T **B,
                                        int ldb,
                                        int batch_size) const {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
  // solve row major `op ( A ) X = α B` by taking it as `X' op ( A' )  =  α B'`
  // where ' stands for transpose
  rocblas_side cuSide =
      (side == CblasLeft) ? rocblas_side_right : rocblas_side_left;
  rocblas_fill cuUplo =
      (uplo == CblasLower) ? rocblas_fill_upper : rocblas_fill_lower;
  // use CUBLAS_OP_C (conjugate transpose) for complex
  rocblas_operation cuTransA = (transA == CblasNoTrans)
                                   ? rocblas_operation_none
                                   : rocblas_operation_transpose;
  rocblas_diagonal cuDiag =
      (diag == CblasUnit) ? rocblas_diagonal_unit : rocblas_diagonal_non_unit;

  context_.CublasCall([&](rocblas_handle handle) {
    CUBlas<T>::TRSM_BATCH(handle,
                          cuSide,
                          cuUplo,
                          cuTransA,
                          cuDiag,
                          N,
                          M,
                          &alpha,
                          A,
                          lda,
                          B,
                          ldb,
                          batch_size);
  });
}

}  // namespace funcs
1390
}  // namespace phi