test_image_classification_layer.py 3.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

L
LoneRanger 已提交
17 18
import nets

19
import paddle
20
from paddle import fluid
21
from paddle.fluid.framework import Program
Q
Qiao Longfei 已提交
22 23


24
def conv_block(input, num_filter, groups, dropouts):
25 26 27 28 29 30 31 32 33 34 35
    return nets.img_conv_group(
        input=input,
        pool_size=2,
        pool_stride=2,
        conv_num_filter=[num_filter] * groups,
        conv_filter_size=3,
        conv_act='relu',
        conv_with_batchnorm=True,
        conv_batchnorm_drop_rate=dropouts,
        pool_type='max',
    )
Q
Qiao Longfei 已提交
36 37 38 39


class TestLayer(unittest.TestCase):
    def test_batch_norm_layer(self):
40 41
        main_program = Program()
        startup_program = Program()
42
        with fluid.program_guard(main_program, startup_program):
G
GGBond8488 已提交
43 44
            images = paddle.static.data(
                name='pixel', shape=[-1, 3, 48, 48], dtype='float32'
45
            )
46
            hidden1 = paddle.static.nn.batch_norm(input=images)
C
Charles-hit 已提交
47 48 49
            hidden2 = paddle.static.nn.fc(
                x=hidden1, size=128, activation='relu'
            )
50
            paddle.static.nn.batch_norm(input=hidden2)
Q
Qiao Longfei 已提交
51

52
        print(str(main_program))
Q
Qiao Longfei 已提交
53 54

    def test_dropout_layer(self):
55 56
        main_program = Program()
        startup_program = Program()
57
        with fluid.program_guard(main_program, startup_program):
G
GGBond8488 已提交
58 59
            images = paddle.static.data(
                name='pixel', shape=[-1, 3, 48, 48], dtype='float32'
60
            )
C
ccrrong 已提交
61
            paddle.nn.functional.dropout(x=images, p=0.5)
Q
Qiao Longfei 已提交
62

63
        print(str(main_program))
Q
Qiao Longfei 已提交
64 65

    def test_img_conv_group(self):
66 67
        main_program = Program()
        startup_program = Program()
Q
Qiao Longfei 已提交
68

69
        with fluid.program_guard(main_program, startup_program):
G
GGBond8488 已提交
70 71
            images = paddle.static.data(
                name='pixel', shape=[-1, 3, 48, 48], dtype='float32'
72
            )
73 74
            conv1 = conv_block(images, 64, 2, [0.3, 0])
            conv_block(conv1, 256, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
75

76
        print(str(main_program))
Q
Qiao Longfei 已提交
77

Q
Qiao Longfei 已提交
78
    def test_elementwise_add_with_act(self):
79 80
        main_program = Program()
        startup_program = Program()
81
        with fluid.program_guard(main_program, startup_program):
G
GGBond8488 已提交
82 83
            image1 = paddle.static.data(
                name='pixel1', shape=[-1, 3, 48, 48], dtype='float32'
84
            )
G
GGBond8488 已提交
85 86
            image2 = paddle.static.data(
                name='pixel2', shape=[-1, 3, 48, 48], dtype='float32'
87
            )
88
            paddle.nn.functional.relu(paddle.add(x=image1, y=image2))
89
        print(main_program)
Q
Qiao Longfei 已提交
90

Q
Qiao Longfei 已提交
91 92 93

if __name__ == '__main__':
    unittest.main()