dist_mnist_dgc.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce

L
LoneRanger 已提交
17
from legacy_test.nets import simple_img_conv_pool
T
tianshuo78520a 已提交
18 19 20 21 22
from legacy_test.test_dist_base import (
    TestDistRunnerBase,
    _insert_comm_op,
    runtime_main,
)
23 24

import paddle
25
from paddle import fluid
26 27 28 29 30 31 32 33 34 35 36 37

paddle.enable_static()

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
L
LoneRanger 已提交
38
    conv_pool_1 = simple_img_conv_pool(
39 40 41 42 43 44 45 46 47 48
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
        param_attr=fluid.ParamAttr(
            initializer=paddle.nn.initializer.Constant(value=0.01)
        ),
    )
L
LoneRanger 已提交
49
    conv_pool_2 = simple_img_conv_pool(
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
        param_attr=fluid.ParamAttr(
            initializer=paddle.nn.initializer.Constant(value=0.01)
        ),
    )

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5

    predict = paddle.static.nn.fc(
        x=conv_pool_2,
        size=SIZE,
        activation="softmax",
        weight_attr=fluid.param_attr.ParamAttr(
            initializer=paddle.nn.initializer.Constant(value=0.01)
        ),
    )
    return predict


class TestDistMnistDGC(TestDistRunnerBase):
    def get_model(self, batch_size=2, use_dgc=False, build_strategy=None):
        # Input data
        images = paddle.static.data(
            name='pixel', shape=[-1, 1, 28, 28], dtype=DTYPE
        )
        label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64')

        # Train program
        predict = cnn_model(images)
        cost = paddle.nn.functional.cross_entropy(
            input=predict, label=label, reduction='none', use_softmax=False
        )
        avg_cost = paddle.mean(x=cost)

        # Evaluator
        batch_size_tensor = paddle.tensor.create_tensor(dtype='int64')
        batch_acc = paddle.static.accuracy(
            input=predict, label=label, total=batch_size_tensor
        )

        inference_program = fluid.default_main_program().clone()
        if not use_dgc:
            opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9)
        else:
            opt = paddle.distributed.fleet.meta_optimizers.DGCMomentumOptimizer(
                learning_rate=self.lr,
                momentum=0.9,
                rampup_begin_step=2,
                num_trainers=build_strategy.num_trainers
                if build_strategy
                else None,
            )
        if use_dgc:
            assert (
                build_strategy is not None
            ), "build_strategy can be None with dgc"
            _insert_comm_op(opt, avg_cost, build_strategy)
        else:
            opt.minimize(avg_cost)

        # Reader
        train_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size
        )
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size
        )

        return (
            inference_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        )


if __name__ == "__main__":
    runtime_main(TestDistMnistDGC)