matmul_kernel.cc 19.3 KB
Newer Older
1
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include <string>

17 18
#include "paddle/phi/kernels/matmul_kernel.h"

19
#include "paddle/phi/backends/onednn/matmul_utils.h"
20 21
#include "paddle/phi/core/kernel_registry.h"

22 23 24 25 26
using dnnl::engine;
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::prop_kind;
using dnnl::stream;
27
using phi::ReshapeToMatrix;
28

29 30 31 32 33 34
namespace phi {

void CalculateMatrixDims(const std::vector<int64_t> &x_dims,
                         const std::vector<int64_t> &y_dims,
                         std::vector<int64_t> *x_bd_dims,
                         std::vector<int64_t> *y_bd_dims,
35
                         DenseTensor *out) {
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  if (x_dims.size() == 1) {
    (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
  } else if (x_dims.size() == 2) {
    (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
    (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
  } else {
    for (size_t i = 0; i < x_dims.size(); ++i) {
      (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
    }
  }
  if (y_dims.size() == 1) {
    (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
  } else if (y_dims.size() == 2) {
    (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
    (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
  } else {
    for (size_t i = 0; i < y_dims.size(); ++i) {
      (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
    }
  }

57
  if (x_dims.size() > 2 && y_dims.size() > 2) {
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto out_dims = vectorize(out->dims());
    for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
      PADDLE_ENFORCE_EQ(
          (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
              (*y_bd_dims)[i] == 1,
          true,
          errors::InvalidArgument(
              "Tensor dimensions are incorrect for broadcasting."
              "Dimensions in X and Y must be same or equal to 1, but "
              "received x_dim[%d]=%d and y_dims[%d]= %d",
              i,
              (*x_bd_dims)[i],
              i,
              (*y_bd_dims)[i]));
      (out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
    }
    out->Resize(make_ddim((out_dims)));
  }
}

template <typename T, typename Context>
void MatmulKernel(const Context &dev_ctx,
                  const DenseTensor &x,
                  const DenseTensor &y,
                  bool transpose_x,
                  bool transpose_y,
                  DenseTensor *out) {
  if (dev_ctx.HasDnnAttr("head_number")) {
    const auto head_number =
        PADDLE_GET_CONST(int, dev_ctx.GetDnnAttr("head_number"));
    PADDLE_ENFORCE_EQ(
        head_number,
        1,
        errors::Unimplemented(
            "oneDNN matmul doesn't support multiple heads. Expected "
            "head_number=1. But received `head_number` is %d",
            head_number));
  }

  constexpr bool is_int8 = funcs::is_int8<T>();
  constexpr bool is_bfloat16 = funcs::is_bfloat16<T>();
  const bool force_fp32_output =
      dev_ctx.HasDnnAttr("force_fp32_output")
          ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output"))
          : false;

104 105
  auto x_dims = vectorize(x.dims());
  auto y_dims = vectorize(y.dims());
106 107 108 109 110 111
  int ndims = std::max(x_dims.size(), y_dims.size());
  ndims = std::max(ndims, 3);

  std::vector<int64_t> x_bd_dims(ndims, 1);
  std::vector<int64_t> y_bd_dims(ndims, 1);

112
  CalculateMatrixDims(x_dims, y_dims, &x_bd_dims, &y_bd_dims, out);
113 114 115 116 117

  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
    funcs::ExecuteMatmul<T, float>(
        dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out);
  } else if (is_bfloat16) {
118
    funcs::ExecuteMatmul<T, phi::dtype::bfloat16>(
119 120 121 122 123 124 125
        dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out);
  } else {
    funcs::ExecuteMatmul<T, int8_t>(
        dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out);
  }
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
template <typename XT, typename YT, typename OT>
class MulPrimitiveFactory {
 public:
  explicit MulPrimitiveFactory(const engine &engine) : engine_(engine) {}

  inner_product_forward CreateMulPrimitive(const DenseTensor *x_input,
                                           const DenseTensor *y_input,
                                           DenseTensor *output,
                                           int x_num_col_dims,
                                           int y_num_col_dims,
                                           const OneDNNContext &dev_ctx) {
    // TODO(intel-minghui) : Remove the restriction that only supports Input(Y)
    // as weights
    PADDLE_ENFORCE_EQ(
        (std::is_same<YT, float>::value),
        true,
        errors::InvalidArgument(
            "Input(Y) must be fp32 data type since only fp32 data type is "
            "supported in the current design of OneDNN INT8."));

    /* check data format and reorder if need */
    auto x_matrix = UpdateDataFormat<XT>(x_input, x_num_col_dims, dev_ctx);
    auto y_matrix = UpdateDataFormat<YT>(y_input, y_num_col_dims, dev_ctx);

    auto output_dim = output->dims();
    if (output_dim.size() != 2) {
      output->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    if (mul_) {
      UpdateDataPointers(dev_ctx, output, &x_matrix);
      Execute();
      return *(mul_);
    }

    auto src_desc =
        CreateMemDescriptor<XT>(&x_matrix, funcs::OneDNNMemoryFormat::nc);
    x_input_ = CreateMemory<XT>(src_desc, &x_matrix);

    if (is_int8_) {
      const auto trans_y = TransposeInputY(&y_matrix);
      auto scale_y = dev_ctx.HasDnnAttr("scale_y")
                         ? PADDLE_GET_CONST(std::vector<float>,
                                            dev_ctx.GetDnnAttr("scale_y"))
                         : std::vector<float>();
      y_input_ = QuantInputY(trans_y, scale_y);
    } else {
      y_input_ = TransposeInputY(&y_matrix);
    }

    auto dst_desc =
        CreateMemDescriptor<OT>(output, funcs::OneDNNMemoryFormat::any);

    mul_ = CreateMulPrimitive(*x_input_, *y_input_, dst_desc, output, dev_ctx);
    Execute();
    return *(mul_);
  }

 private:
  memory ReorderWithScale(const memory::desc &src_desc,
                          const memory::desc &dst_desc,
                          void *src_data,
                          const std::vector<float> &scale) {
    auto mask = scale.size() > 1 ? 1 : 0;
    dnnl::primitive_attr attr;
    attr.set_output_scales(mask, scale);

    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);

    auto reorder_pd = dnnl::reorder::primitive_desc(src_mem, dst_mem, attr);

    auto reorder = dnnl::reorder(reorder_pd);

    auto &astream = OneDNNContext::tls().get_stream();
    {
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }

    return dst_mem;
  }

  memory QuantInputY(memory input_y, const std::vector<float> &scale_y) {
    const auto &dims = input_y.get_desc().data.dims;
    auto ndims = input_y.get_desc().data.ndims;
    auto y_dims = std::vector<int64_t>(dims, dims + ndims);

    auto user_y_desc =
        CreateMemDescriptor<YT>(y_dims, funcs::OneDNNMemoryFormat::oi);
    auto y_desc =
        CreateMemDescriptor<int8_t>(y_dims, funcs::OneDNNMemoryFormat::oi);

    return ReorderWithScale(
        user_y_desc, y_desc, input_y.get_data_handle(), scale_y);
  }

  dnnl::primitive_attr CreateMulAttr(const OneDNNContext &dev_ctx,
                                     bool force_fp32_output) {
    dnnl::primitive_attr mul_attr;

    auto scale_y_data = dev_ctx.HasDnnAttr("scale_y")
                            ? PADDLE_GET_CONST(std::vector<float>,
                                               dev_ctx.GetDnnAttr("scale_y"))
                            : std::vector<float>{1.0};
    auto scale_x_data =
        dev_ctx.HasDnnAttr("scale_x")
            ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("scale_x"))
            : 1.0f;
    auto scale_out =
        dev_ctx.HasDnnAttr("scale_out")
            ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("scale_out"))
            : 1.0f;
    auto scale_out_data = force_fp32_output ? 1.0f : scale_out;

    bool is_multi_channel = scale_y_data.size() > 1;
    int count = is_multi_channel ? scale_y_data.size() : 1;
    std::vector<float> output_shift_scale(count);
    for (int i = 0; i < count; i++) {
      if (scale_y_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_x_data * scale_y_data[i]);
    }
    int mul_mask = is_multi_channel ? 1 : 0;
    mul_attr.set_output_scales(mul_mask, output_shift_scale);

    return mul_attr;
  }

  inner_product_forward CreateMulPrimitive(const memory &x_memory,
                                           const memory &y_memory,
                                           const memory::desc &dst_desc,
                                           DenseTensor *output,
                                           const OneDNNContext &dev_ctx) {
    const auto x_desc = x_memory.get_desc();
    const auto y_desc = y_memory.get_desc();
    inner_product_forward::primitive_desc mul_prim_desc;

    const auto &mul_desc = inner_product_forward::desc(
        prop_kind::forward, x_desc, y_desc, dst_desc);

    if (is_int8_) {
      bool force_fp32_output =
          dev_ctx.HasDnnAttr("force_fp32_output")
              ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output"))
              : false;
      auto mul_attr = CreateMulAttr(dev_ctx, force_fp32_output);
      mul_prim_desc =
          inner_product_forward::primitive_desc(mul_desc, mul_attr, engine_);
    } else {
      mul_prim_desc = inner_product_forward::primitive_desc(mul_desc, engine_);
    }

    output_ = CreateDstMemory(mul_prim_desc, dev_ctx, output);

    return inner_product_forward(mul_prim_desc);
  }

  void Execute() {
    auto &astream = OneDNNContext::tls().get_stream();
    (*mul_).execute(astream,
                    {{DNNL_ARG_SRC, *x_input_},
                     {DNNL_ARG_WEIGHTS, *y_input_},
                     {DNNL_ARG_DST, *output_}});
    astream.wait();
  }

  template <typename T>
  DenseTensor UpdateDataFormat(const DenseTensor *data,
                               int num_col_dims,
                               const OneDNNContext &dev_ctx) {
    DenseTensor x_tmp;
    DenseTensor data_matrix;
    // This code is enforcing plain (non-blocked) memory arrangement
    // in order to flatten (reduce dimensionality) of DenseTensor later
    auto src_mdesc = data->mem_desc();
    auto dst_mdesc = data->dims().size() >= 4
                         ? (data->dims().size() == 5
                                ? CreateMemDescriptor<T>(
                                      data, funcs::OneDNNMemoryFormat::ncdhw)
                                : CreateMemDescriptor<T>(
                                      data, funcs::OneDNNMemoryFormat::nchw))
                         : src_mdesc;

    if (src_mdesc != dst_mdesc) {
      dev_ctx.template Alloc<T>(&x_tmp, data->memory_size());

      Reorder(src_mdesc,
              dst_mdesc,
              funcs::to_void_cast<T>(data->data<T>()),
              funcs::to_void_cast<T>(x_tmp.data<T>()));

      x_tmp.Resize(data->dims());
      x_tmp.set_mem_desc(dst_mdesc);
      data_matrix = ReshapeToMatrix(x_tmp, num_col_dims);
    } else {
      data_matrix = ReshapeToMatrix(*data, num_col_dims);
    }

    return data_matrix;
  }

  void UpdateDataPointers(const OneDNNContext &dev_ctx,
                          DenseTensor *out,
                          const DenseTensor *in) {
    x_input_->set_data_handle(funcs::to_void_cast<XT>(in->data<XT>()));
    output_->set_data_handle(dev_ctx.template Alloc<OT>(out));
    out->set_mem_desc(output_->get_desc());
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
      const DenseTensor *tensor,
      funcs::OneDNNMemoryFormat format,
      memory::data_type type = funcs::OneDNNGetDataType<T>()) {
    auto dims = vectorize<int64_t>(tensor->dims());
    return funcs::OneDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory::desc CreateMemDescriptor(
      const std::vector<int64_t> &dims,
      funcs::OneDNNMemoryFormat format,
      memory::data_type type = funcs::OneDNNGetDataType<T>()) {
    return funcs::OneDNNMemDesc(dims, type, format);
  }

  template <typename T>
  memory CreateMemory(const memory::desc &desc, const DenseTensor *tensor) {
    return memory(desc, engine_, funcs::to_void_cast<T>(tensor->data<T>()));
  }

  memory CreateDstMemory(
      const inner_product_forward::primitive_desc &mul_prim_desc,
      const OneDNNContext &dev_ctx,
      DenseTensor *output) {
    auto dst_desc = mul_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();

    OT *output_data = dev_ctx.template Alloc<OT>(output, buffer_size);
    output->set_mem_desc(dst_desc);
    return memory(dst_desc, engine_, funcs::to_void_cast<OT>(output_data));
  }

  memory Reorder(const memory::desc &src_desc,
                 const memory::desc &dst_desc,
                 void *src_data,
                 void *dst_data = NULL) {
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = dst_data ? memory(dst_desc, engine_, dst_data)
                            : memory(dst_desc, engine_);

    auto reorder = dnnl::reorder(src_mem, dst_mem);

    auto &astream = OneDNNContext::tls().get_stream();
    {
      reorder.execute(astream, src_mem, dst_mem);
      astream.wait();
    }

    return dst_mem;
  }

  memory TransposeInputY(const DenseTensor *input_y) {
    auto dims = vectorize<int64_t>(input_y->dims());
    std::swap(dims[0], dims[1]);  // Correct output dimensions
    auto src_desc =
        CreateMemDescriptor<YT>(dims, funcs::OneDNNMemoryFormat::io);
    auto dst_desc =
        CreateMemDescriptor<YT>(dims, funcs::OneDNNMemoryFormat::oi);
    return Reorder(
        src_desc, dst_desc, funcs::to_void_cast<YT>(input_y->data<YT>()));
  }

  const engine &engine_;
  paddle::optional<memory> x_input_;
  paddle::optional<memory> y_input_;
  paddle::optional<memory> output_;
  paddle::optional<inner_product_forward> mul_;
  static constexpr bool is_int8_ = funcs::is_int8<XT>();
};

/* OT: output data type */
template <typename XT, typename YT, typename OT>
std::shared_ptr<MulPrimitiveFactory<XT, YT, OT>> GetPrimitiveFactory(
    const OneDNNContext &dev_ctx,
    const DenseTensor *input_x,
    const DenseTensor *input_y,
    const engine &onednn_engine) {
  std::string key = funcs::CreateKey(dev_ctx,
418
                                     phi::TransToProtoVarType(input_x->dtype()),
419
                                     vectorize(input_x->dims()),
420
                                     phi::TransToProtoVarType(input_y->dtype()),
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
                                     vectorize(input_y->dims()),
                                     dev_ctx.GetOutputsName("Out")[0]);
  key = funcs::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);

  auto prim_creator = std::static_pointer_cast<MulPrimitiveFactory<XT, YT, OT>>(
      dev_ctx.GetBlob(key));

  if (prim_creator == nullptr) {
    prim_creator =
        std::make_shared<MulPrimitiveFactory<XT, YT, OT>>(onednn_engine);
    dev_ctx.SetBlob(key, prim_creator);
  }

  return prim_creator;
}

/* XT: input x data type, YT: input y data type */
template <typename XT, typename YT>
inner_product_forward GetMulPrimitive(const OneDNNContext &dev_ctx,
                                      const DenseTensor *input_x,
                                      const DenseTensor *input_y,
                                      DenseTensor *output,
                                      int x_num_col_dims,
                                      int y_num_col_dims,
                                      const engine &onednn_engine) {
  constexpr bool is_int8 = funcs::is_int8<XT>();
  bool force_fp32_output =
      dev_ctx.HasDnnAttr("force_fp32_output")
          ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output"))
          : false;

  if (is_int8 && !force_fp32_output) {
    return GetPrimitiveFactory<XT, YT, int8_t>(
               dev_ctx, input_x, input_y, onednn_engine)
        ->CreateMulPrimitive(
            input_x, input_y, output, x_num_col_dims, y_num_col_dims, dev_ctx);

  } else {
    return GetPrimitiveFactory<XT, YT, float>(
               dev_ctx, input_x, input_y, onednn_engine)
        ->CreateMulPrimitive(
            input_x, input_y, output, x_num_col_dims, y_num_col_dims, dev_ctx);
  }
}

/* XT: input x data type */
template <typename XT, typename Context>
void MatmulWithFlattenKernelINT8(const Context &dev_ctx,
                                 const DenseTensor &x,
                                 const DenseTensor &y,
                                 int x_num_col_dims,
                                 int y_num_col_dims,
                                 DenseTensor *out) {
  PADDLE_ENFORCE_EQ(dev_ctx.GetPlace().GetType() == AllocationType::CPU,
                    true,
                    errors::PreconditionNotMet(
                        "oneDNN MatmulWithFlatten kernel must use CPUPlace"));

  OneDNNContext::tls().log_lib_version();
  auto &onednn_engine = dev_ctx.GetEngine();

  auto out_dims = out->dims();

  auto mul = GetMulPrimitive<XT, float>(
      dev_ctx, &x, &y, out, x_num_col_dims, y_num_col_dims, onednn_engine);

  if (out_dims.size() != 2) {
    out->Resize(out_dims);
  }

  auto in_md = memory::desc(*dnnl_primitive_desc_query_md(
      mul.get_primitive_desc(), dnnl_query_dst_md, 0));
  out->set_mem_desc(in_md.reshape(vectorize<int64_t>(out->dims())));
}

template <typename T, typename Context>
void MatmulWithFlattenKernel(const Context &dev_ctx,
                             const DenseTensor &x,
                             const DenseTensor &y,
                             int x_num_col_dims,
                             int y_num_col_dims,
                             DenseTensor *out) {
  constexpr bool is_int8 = funcs::is_int8<T>();
  if (is_int8) {
    MatmulWithFlattenKernelINT8<T, Context>(
        dev_ctx, x, y, x_num_col_dims, y_num_col_dims, out);
    return;
  }

  const DenseTensor x_matrix =
      x.dims().size() > 2 ? ReshapeToMatrix(x, x_num_col_dims) : x;
  const DenseTensor y_matrix =
      y.dims().size() > 2 ? ReshapeToMatrix(y, y_num_col_dims) : y;

  // adding mb dim because MatMulV2 handler needs it
  std::vector<int64_t> x_dims(3, 1);
  std::vector<int64_t> y_dims(3, 1);

  x_dims[1] = x_matrix.dims()[0];
  x_dims[2] = x_matrix.dims()[1];
  y_dims[1] = y_matrix.dims()[0];
  y_dims[2] = y_matrix.dims()[1];

  funcs::ExecuteMul<T>(
      dev_ctx, x_matrix, y_matrix, x_dims, y_dims, false, false, out);
}

528 529 530 531 532 533 534 535 536 537
}  // namespace phi

PD_REGISTER_KERNEL(matmul,
                   OneDNN,
                   ONEDNN,
                   phi::MatmulKernel,
                   float,
                   phi::dtype::bfloat16,
                   int8_t,
                   uint8_t) {}
538 539 540 541 542 543 544 545 546

PD_REGISTER_KERNEL(matmul_with_flatten,
                   OneDNN,
                   ONEDNN,
                   phi::MatmulWithFlattenKernel,
                   float,
                   phi::dtype::bfloat16,
                   uint8_t,
                   int8_t) {}