fused_gemm_epilogue_op.cu 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

16
#include "paddle/fluid/operators/fused/fused_gemm_epilogue_op.h"
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
19
#include "paddle/fluid/framework/scope_guard.h"
20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/fluid/platform/dynload/cublasLt.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FusedGemmEpilogueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
L
Leo Chen 已提交
32
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
33 34 35 36 37 38 39 40 41 42 43 44

    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* bias = ctx.Input<Tensor>("Bias");

    Tensor* out = ctx.Output<Tensor>("Out");
    Tensor* reserve_space = ctx.Output<Tensor>("ReserveSpace");

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

    std::string activation = ctx.Attr<std::string>("activation");
45 46
    VLOG(10) << "trans_x = " << trans_x << " , trans_y = " << trans_y
             << " , activation = " << activation;
47 48 49 50 51 52 53
    bool enable_auxiliary = reserve_space == nullptr ? false : true;

    out->mutable_data<T>(ctx.GetPlace());
    auto* out_data = out->data<T>();

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), trans_x ? 1 : x->dims().size() - 1);
54
    // (M * K) * (K * N)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    int64_t M = trans_x ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = trans_y ? y->dims()[1] : y->dims()[0];
    int64_t N = trans_y ? y->dims()[0] : y->dims()[1];

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtMatmulDesc_t operation_desc = NULL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
        &operation_desc, compute_type, scale_type));
    cublasOperation_t transx = trans_x ? CUBLAS_OP_T : CUBLAS_OP_N;
    cublasOperation_t transy = trans_y ? CUBLAS_OP_T : CUBLAS_OP_N;
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
78 79 80
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSB,
            &transx,
81 82 83
            sizeof(transx)));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
84 85 86
            operation_desc,
            CUBLASLT_MATMUL_DESC_TRANSA,
            &transy,
87 88 89 90 91 92
            sizeof(transy)));

    cublasLtEpilogue_t epiloque_func =
        get_epilogue_type_(activation, enable_auxiliary);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
93 94 95
            operation_desc,
            CUBLASLT_MATMUL_DESC_EPILOGUE,
            &epiloque_func,
96 97 98 99
            sizeof(epiloque_func)));
    const T* bias_data = bias->data<T>();
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
100 101 102
            operation_desc,
            CUBLASLT_MATMUL_DESC_BIAS_POINTER,
            &bias_data,
103 104 105 106 107 108 109 110 111 112
            sizeof(bias_data)));

    if (enable_auxiliary && activation != "none") {
      size_t reserve_space_size = 0;
      if (activation == "relu") {
        // Count in bits.
        reserve_space_size = phi::product(out->dims()) / 8;
      } else {
        reserve_space_size = phi::product(out->dims()) * sizeof(T);
      }
113 114
      reserve_space->mutable_data(
          ctx.GetPlace(), out->type(), reserve_space_size);
115 116 117 118
      void* aux_data = reinterpret_cast<void*>(reserve_space->data<T>());

      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
119 120 121 122
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
              &aux_data,
              sizeof(aux_data)));
123
      int64_t aux_ld = N;
124 125
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
126 127 128
              operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
              &aux_ld,
129
              sizeof(aux_ld)));
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    }

    cublasLtMatrixLayout_t x_desc = NULL, y_desc = NULL, out_desc = NULL;
    if (trans_x)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, M, K, M));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, K, M, K));
    if (trans_y)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, K, N, K));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, N, K, N));
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
        &out_desc, mat_type, N, M, N));

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
S
sneaxiy 已提交
149 150 151
    // NOTE(zengjinle): I do not know whether the 4MB workspace size is
    // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    cudaStream_t stream = dev_ctx.stream();
    memory::allocation::AllocationPtr workspace =
        memory::Alloc(dev_ctx, workspace_size);

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

167 168 169
    const auto* y_data = y->data<T>();
    const auto* x_data = x->data<T>();

170 171 172 173 174 175 176 177 178 179 180 181 182
    auto algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                              operation_desc,
                                                              y_desc,
                                                              x_desc,
                                                              out_desc,
                                                              alpha,
                                                              beta,
                                                              y_data,
                                                              x_data,
                                                              out_data,
                                                              stream,
                                                              workspace->ptr(),
                                                              workspace_size);
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmul(lt_handle,
                                          operation_desc,
                                          alpha,
                                          y_data,
                                          y_desc,
                                          x_data,
                                          x_desc,
                                          beta,
                                          out_data,
                                          out_desc,
                                          out_data,
                                          out_desc,
                                          algo,
                                          workspace->ptr(),
                                          workspace_size,
                                          stream));
201 202 203 204 205 206 207 208 209

    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescDestroy(operation_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(y_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(x_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(out_desc));
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(const std::string& activation,
                                               bool enable_auxiliary) {
    if (activation == "relu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_RELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_RELU_BIAS;
    } else if (activation == "gelu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_GELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_GELU_BIAS;
    } else if (activation == "none") {
      return CUBLASLT_EPILOGUE_BIAS;
    } else {
      PADDLE_ENFORCE_EQ(
225 226
          true,
          false,
227 228 229 230 231 232 233 234 235
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation));
    }
  }
};

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
enum FusedGEMMGradInType { kDX = 0, kDY = 1, kDZ = 2 };

template <bool TransX, bool TransY>
struct FusedGEMMGradTrait;

template <>
struct FusedGEMMGradTrait<false, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, false> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradATrans = false;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<false, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradATrans = false;
  static constexpr auto kXGradBTrans = false;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = false;
};

template <>
struct FusedGEMMGradTrait<true, true> {
  static constexpr auto kXGradA = FusedGEMMGradInType::kDY;
  static constexpr auto kXGradB = FusedGEMMGradInType::kDZ;
  static constexpr auto kXGradATrans = true;
  static constexpr auto kXGradBTrans = true;

  static constexpr auto kYGradA = FusedGEMMGradInType::kDZ;
  static constexpr auto kYGradB = FusedGEMMGradInType::kDX;
  static constexpr auto kYGradATrans = true;
  static constexpr auto kYGradBTrans = true;
};

static constexpr auto BoolToCuBlasEnum(bool transpose) {
  return transpose ? CUBLAS_OP_T : CUBLAS_OP_N;
}

297 298 299 300
template <typename DeviceContext, typename T>
class FusedGemmEpilogueGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
301 302
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    if (transpose_x) {
      if (transpose_y) {
        ComputeImpl<true, true>(ctx);
      } else {
        ComputeImpl<true, false>(ctx);
      }
    } else {
      if (transpose_y) {
        ComputeImpl<false, true>(ctx);
      } else {
        ComputeImpl<false, false>(ctx);
      }
    }
  }

 private:
  template <bool TransX, bool TransY>
  static void ComputeImpl(const framework::ExecutionContext& ctx) {
    using Trait = FusedGEMMGradTrait<TransX, TransY>;
L
Leo Chen 已提交
323
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
324 325 326 327 328 329 330 331 332 333 334
    const Tensor* dout = ctx.Input<Tensor>("DOut");
    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* reserve_space = ctx.Input<Tensor>("ReserveSpace");

    Tensor* dx = ctx.Output<Tensor>("DX");
    Tensor* dy = ctx.Output<Tensor>("DY");
    Tensor* dbias = ctx.Output<Tensor>("DBias");

    std::string activation_grad = ctx.Attr<std::string>("activation_grad");

335 336 337 338 339 340 341 342 343 344
    VLOG(10) << "trans_x = " << TransX << " , trans_y = " << TransY
             << " , activation_grad = " << activation_grad;

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), TransX ? 1 : x->dims().size() - 1);

    // (M * K) * (K * N)
    int64_t M = TransX ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = TransY ? y->dims()[1] : y->dims()[0];
    int64_t N = TransY ? y->dims()[0] : y->dims()[1];
345

346
    VLOG(10) << "M = " << M << " , K = " << K << " , N = " << N;
347 348 349 350 351 352 353 354 355 356 357 358 359 360

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
S
sneaxiy 已提交
361 362 363
    // NOTE(zengjinle): I do not know whether the 4MB workspace size is
    // "enough". I just followed the settings from the NVIDIA MLPerf BERT code.
    size_t workspace_size = static_cast<size_t>(4) * 1024 * 1024;
364
    const cublasLtMatmulAlgo_t* algo = nullptr;
365 366 367 368 369 370 371 372 373 374 375 376 377
    cudaStream_t stream = dev_ctx.stream();

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

378 379 380 381 382 383 384 385
    cublasLtMatrixLayout_t dout_desc = nullptr, dout_trans_desc = nullptr;
    cublasLtMatrixLayout_t x_desc = nullptr, x_trans_desc = nullptr;
    cublasLtMatrixLayout_t y_desc = nullptr, y_trans_desc = nullptr;
    cublasLtMatrixLayout_t dx_desc = nullptr, dy_desc = nullptr;
    cublasLtMatmulDesc_t dx_operation_desc = nullptr,
                         dy_operation_desc = nullptr;

    DEFINE_PADDLE_SCOPE_GUARD([&] {
386 387 388 389 390 391 392 393
      auto descs = {dout_desc,
                    dout_trans_desc,
                    x_desc,
                    x_trans_desc,
                    y_desc,
                    y_trans_desc,
                    dx_desc,
                    dy_desc};
394 395 396 397 398 399
      for (auto desc : descs) {
        if (desc) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutDestroy(desc));
        }
      }
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
      if (dx_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dx_operation_desc));
      }

      if (dy_operation_desc) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescDestroy(dy_operation_desc));
      }
    });

    auto x_row = TransX ? K : M;
    auto x_col = TransX ? M : K;
    auto y_row = TransY ? N : K;
    auto y_col = TransY ? K : N;
    auto z_row = TransX ? N : M;
    auto z_col = TransX ? M : N;

    // dx = func(dout, y)
420
    if (dx) {
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
      constexpr auto kXGradAIsDZ = (Trait::kXGradA == FusedGEMMGradInType::kDZ);
      cublasLtMatrixLayout_t *dx_dout_desc, *dx_y_desc;

      if (TransX) {
        dx_dout_desc = &dout_trans_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_row, z_col, z_row));
      } else {
        dx_dout_desc = &dout_desc;
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatrixLayoutCreate(
                dx_dout_desc, mat_type, z_col, z_row, z_col));
      }

      dx_y_desc = &y_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dx_y_desc, mat_type, y_col, y_row, y_col));

      auto& a_desc = kXGradAIsDZ ? (*dx_dout_desc) : (*dx_y_desc);
      auto& b_desc = kXGradAIsDZ ? (*dx_y_desc) : (*dx_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kXGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kXGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dx_desc, mat_type, x_col, x_row, x_col));

448 449 450 451
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dx_operation_desc, compute_type, scale_type));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
452 453 454
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
455
              sizeof(a_trans)));
456 457
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
458 459 460
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
461 462
              sizeof(b_trans)));

463 464 465 466
      cublasLtEpilogue_t epiloque_func_for_dx =
          get_epilogue_type_(activation_grad);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
467 468 469 470
              dx_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dx,
              sizeof(epiloque_func_for_dx)));
471 472 473 474 475

      if (activation_grad != "none") {
        auto* aux_data = reserve_space->data<T>();
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
476 477 478 479
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
                &aux_data,
                sizeof(aux_data)));
480
        int64_t aux_ld = TransX ? M : K;
481 482
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
483 484 485 486
                dx_operation_desc,
                CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD,
                &aux_ld,
                sizeof(aux_ld)));
487 488
      }

489
      auto dx_workspace = memory::Alloc(dev_ctx, workspace_size);
490

491
      auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
492 493
      const auto* y_data = y->data<T>();
      const auto* dout_data = dout->data<T>();
494 495
      const auto* a_data = kXGradAIsDZ ? dout_data : y_data;
      const auto* b_data = kXGradAIsDZ ? y_data : dout_data;
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dx_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dx_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dx_data,
                                                        stream,
                                                        dx_workspace->ptr(),
                                                        workspace_size);
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dx_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dx_data,
                                            dx_desc,
                                            dx_data,
                                            dx_desc,
                                            algo,
                                            dx_workspace->ptr(),
                                            workspace_size,
                                            stream));
529 530
    }

531
    // dy = func(dout, x)
532
    if (dy) {
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
      constexpr auto kYGradAIsDZ = (Trait::kYGradA == FusedGEMMGradInType::kDZ);

      cublasLtMatrixLayout_t *dy_dout_desc = nullptr, *dy_x_desc = nullptr;
      if (TransX) {
        dy_dout_desc = &dout_trans_desc;
        if (dout_trans_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_row, z_col, z_row));
        }
      } else {
        dy_dout_desc = &dout_desc;
        if (dout_desc == nullptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::cublasLtMatrixLayoutCreate(
                  dy_dout_desc, mat_type, z_col, z_row, z_col));
        }
      }

      dy_x_desc = &x_trans_desc;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          dy_x_desc, mat_type, x_col, x_row, x_col));

      auto& a_desc = kYGradAIsDZ ? (*dy_dout_desc) : (*dy_x_desc);
      auto& b_desc = kYGradAIsDZ ? (*dy_x_desc) : (*dy_dout_desc);
      auto a_trans = BoolToCuBlasEnum(Trait::kYGradATrans);
      auto b_trans = BoolToCuBlasEnum(Trait::kYGradBTrans);

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dy_desc, mat_type, y_col, y_row, y_col));

564 565
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dy_operation_desc, compute_type, scale_type));
566

567 568
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
569 570 571
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSB,
              &a_trans,
572
              sizeof(a_trans)));
573 574
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
575 576 577
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_TRANSA,
              &b_trans,
578 579 580 581 582 583 584 585 586 587 588 589 590
              sizeof(b_trans)));

      cublasLtEpilogue_t epiloque_func_for_dy;
      if (dbias == nullptr) {
        epiloque_func_for_dy = CUBLASLT_EPILOGUE_DEFAULT;
      } else {
        if (TransY) {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADB;
        } else {
          epiloque_func_for_dy = CUBLASLT_EPILOGUE_BGRADA;
        }
      }

591 592
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
593 594 595 596
              dy_operation_desc,
              CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dy,
              sizeof(epiloque_func_for_dy)));
597 598

      if (dbias) {
599
        auto* dbias_data = dbias->mutable_data<T>(ctx.GetPlace());
600 601
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
602 603 604 605
                dy_operation_desc,
                CUBLASLT_MATMUL_DESC_BIAS_POINTER,
                &dbias_data,
                sizeof(dbias_data)));
606 607
      }

608 609
      auto dy_workspace = memory::Alloc(dev_ctx, workspace_size);
      auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
610 611
      const auto* dout_data = dout->data<T>();
      const auto* x_data = x->data<T>();
612 613
      const auto* a_data = kYGradAIsDZ ? dout_data : x_data;
      const auto* b_data = kYGradAIsDZ ? x_data : dout_data;
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628
      auto algo =
          GemmEpilogueAlgoCache::Instance().GetGemmAlgo(lt_handle,
                                                        dy_operation_desc,
                                                        b_desc,
                                                        a_desc,
                                                        dy_desc,
                                                        alpha,
                                                        beta,
                                                        b_data,
                                                        a_data,
                                                        dy_data,
                                                        stream,
                                                        dy_workspace->ptr(),
                                                        workspace_size);
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmul(lt_handle,
                                            dy_operation_desc,
                                            alpha,
                                            b_data,
                                            b_desc,
                                            a_data,
                                            a_desc,
                                            beta,
                                            dy_data,
                                            dy_desc,
                                            dy_data,
                                            dy_desc,
                                            algo,
                                            dy_workspace->ptr(),
                                            workspace_size,
                                            stream));
647 648 649 650 651 652 653 654 655 656 657 658 659 660
    }
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(
      const std::string& activation_grad) {
    if (activation_grad == "relu_grad") {
      return CUBLASLT_EPILOGUE_DRELU;
    } else if (activation_grad == "gelu_grad") {
      return CUBLASLT_EPILOGUE_DGELU;
    } else if (activation_grad == "none") {
      return CUBLASLT_EPILOGUE_DEFAULT;
    } else {
      PADDLE_ENFORCE_EQ(
661 662
          true,
          false,
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
          platform::errors::InvalidArgument(
              "The activation_grad attribute of fused_gemm_epilogue op should "
              "be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation_grad=%s.",
              activation_grad));
    }
  }
};

}  // namespace operators
}  // namespace paddle

#if CUDA_VERSION >= 11060
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue,
L
Leo Chen 已提交
680 681 682
    ops::FusedGemmEpilogueKernel<phi::GPUContext, float>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, double>,
    ops::FusedGemmEpilogueKernel<phi::GPUContext, paddle::platform::float16>);
683 684 685

REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue_grad,
L
Leo Chen 已提交
686 687 688
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext, float>,
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext, double>,
    ops::FusedGemmEpilogueGradKernel<phi::GPUContext,
689 690
                                     paddle::platform::float16>);
#endif