tensor_util.cc 59.6 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

15 16
#include "paddle/fluid/framework/tensor_util.h"

C
chengduoZH 已提交
17 18
#include <algorithm>
#include <limits>
C
chengduo 已提交
19
#include <memory>
20
#include <string>
C
chengduo 已提交
21
#include <utility>
C
chengduoZH 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/data_type.h"
26
#include "paddle/fluid/platform/complex.h"
27
#include "paddle/fluid/platform/profiler/event_tracing.h"
28
#include "paddle/phi/core/dense_tensor.h"
29

30
#ifdef PADDLE_WITH_MKLDNN
31
#include "dnnl_debug.h"  // NOLINT
32
#endif
Y
Yang Yu 已提交
33 34 35

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
36

37
template <typename TENSOR>
38 39 40 41
void TensorCopyImpl(const TENSOR& src,
                    const platform::Place& dst_place,
                    const platform::DeviceContext& ctx,
                    TENSOR* dst) {
42 43
  if (&src == dst) {
    auto src_copy = src;
44
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
45 46 47
    return;
  }

M
minqiyang 已提交
48 49
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
50 51 52 53
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
54
  auto src_ptr = src.data();
55
#ifdef PADDLE_WITH_MKLDNN
56
  dst->set_mem_desc(src.mem_desc());
57 58 59 60
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
61 62
          ? dst->mutable_data(dst_place, src.dtype(), src.memory_size())
          : dst->mutable_data(dst_place, src.dtype());
63
#else
64
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
65
#endif
66
  dst->set_layout(src.layout());
67 68 69 70 71
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
72
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
73

74 75 76
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
77
                  : src.numel() * framework::DataTypeSize(src.dtype());
78
#else
79
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
80
#endif
Y
Yi Wang 已提交
81 82

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
83
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
Y
Yi Wang 已提交
84
  }
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_custom_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
#endif
108 109 110
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
111
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
112 113
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
114
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
115 116 117 118 119 120 121
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
122
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
123 124 125 126 127
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
128 129 130 131 132 133
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
134
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
135 136 137
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
138 139 140 141 142
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
143
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.dtype());
144
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);
145 146 147

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
148 149 150 151 152
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
153 154 155 156 157 158 159 160
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
161
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
162 163 164
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
165 166 167 168 169 170 171 172 173 174
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
175
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
176
  }
W
WangXi 已提交
177 178
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
179 180
    auto src_npu_pinned_place = src_place;
    auto dst_npu_place = dst_place;
W
WangXi 已提交
181
    auto ctx_place = ctx.GetPlace();
182 183
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place),
                      true,
W
WangXi 已提交
184 185 186 187
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
188
    auto ctx_npu_place = ctx_place;
189 190
    PADDLE_ENFORCE_EQ(dst_npu_place,
                      ctx_npu_place,
W
WangXi 已提交
191 192 193 194
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
195 196
                          dst_npu_place.device,
                          ctx_npu_place.device));
W
WangXi 已提交
197 198
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
199 200
    memory::Copy(
        dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size, stream);
W
WangXi 已提交
201 202 203
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
204 205
    auto src_npu_place = src_place;
    auto dst_npu_pinned_place = dst_place;
W
WangXi 已提交
206
    auto ctx_place = ctx.GetPlace();
207 208
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place),
                      true,
W
WangXi 已提交
209 210 211 212
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
213
    auto ctx_npu_place = ctx_place;
214 215
    PADDLE_ENFORCE_EQ(src_place,
                      ctx_npu_place,
W
WangXi 已提交
216 217 218 219
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
220 221
                          src_npu_place.device,
                          ctx_npu_place.device));
W
WangXi 已提交
222 223
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
224 225
    memory::Copy(
        dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size, stream);
W
WangXi 已提交
226
  }
227 228 229 230 231
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
232
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
233 234
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
235
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
236
  }
237
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
238
           platform::is_cpu_place(dst_place)) {
239
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
240 241 242
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
243
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
244 245 246
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
247 248
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
Y
Yi Wang 已提交
249
    auto ctx_place = ctx.GetPlace();
250
    PADDLE_ENFORCE_EQ(
251 252
        platform::is_gpu_place(ctx_place),
        true,
253 254 255
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
256
    auto ctx_gpu_place = ctx_place;
257 258
    PADDLE_ENFORCE_EQ(src_gpu_place,
                      ctx_gpu_place,
259 260 261
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
262 263
                          src_gpu_place,
                          ctx_gpu_place));
L
Leo Chen 已提交
264
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
265
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
266 267 268
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
269 270
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
271
    auto ctx_place = ctx.GetPlace();
272
    PADDLE_ENFORCE_EQ(
273 274
        platform::is_gpu_place(ctx_place),
        true,
275 276 277
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
278
    auto ctx_gpu_place = ctx_place;
279 280
    PADDLE_ENFORCE_EQ(dst_gpu_place,
                      ctx_gpu_place,
281 282 283
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
284 285
                          dst_gpu_place,
                          ctx_gpu_place));
L
Leo Chen 已提交
286
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
287
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
288 289 290
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
291 292
    auto src_gpu_place = src_place;
    auto dst_cuda_pinned_place = dst_place;
293
    auto ctx_place = ctx.GetPlace();
294 295
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place),
                      true,
296 297 298 299
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
300
    auto ctx_gpu_place = ctx_place;
301 302
    PADDLE_ENFORCE_EQ(src_gpu_place,
                      ctx_gpu_place,
303 304 305 306
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
307 308
                          src_gpu_place.device,
                          ctx_gpu_place.device));
L
Leo Chen 已提交
309
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
310 311
    memory::Copy(
        dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
312 313 314
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
315 316
    auto src_cuda_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
317
    auto ctx_place = ctx.GetPlace();
318 319
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place),
                      true,
320 321 322 323
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
324
    auto ctx_gpu_place = ctx_place;
325 326
    PADDLE_ENFORCE_EQ(dst_gpu_place,
                      ctx_gpu_place,
327 328 329 330
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
331 332
                          dst_gpu_place.device,
                          ctx_gpu_place.device));
L
Leo Chen 已提交
333
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
334 335
    memory::Copy(
        dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size, stream);
336 337 338
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
339 340
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
341
    auto ctx_place = ctx.GetPlace();
342
    PADDLE_ENFORCE_EQ(
343 344
        platform::is_gpu_place(ctx_place),
        true,
345 346 347
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
L
Leo Chen 已提交
348
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
C
chengduo 已提交
349
    if (platform::is_same_place(src_place, dst_place)) {
350 351
      memory::Copy(
          dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
352 353
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
354 355
        memory::Copy(
            dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
356
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
357
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
358
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
359 360
        memory::Copy(
            dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
361
      } else {
362 363
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
364 365
      }
    }
366 367
  }
  else {  // NOLINT
368 369
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
370 371
  }
#endif
372 373 374
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
375 376
    auto src_mlu_place = src_place;
    auto dst_cpu_place = dst_place;
377 378 379 380 381 382
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
383 384
    auto src_cpu_place = src_place;
    auto dst_mlu_place = dst_place;
385 386 387 388 389 390
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
391 392
    auto src_mlu_place = src_place;
    auto dst_mlu_place = dst_place;
393 394 395 396 397 398 399 400 401
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
425 426
}

427
template <typename TENSOR>
428 429
void TensorCopyImpl(const TENSOR& src,
                    const platform::Place& dst_place,
430
                    TENSOR* dst) {
Y
Yi Wang 已提交
431 432
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
433
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
434 435
      platform::is_mlu_place(dst_place) ||
      platform::is_custom_place(dst_place)) {
Y
Yi Wang 已提交
436
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
437 438
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
439
  }
440 441 442
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

443 444
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
445 446 447
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
448 449 450 451
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
                const platform::DeviceContext& ctx,
                Tensor* dst) {
452 453
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
Y
Yi Wang 已提交
454

455 456
void TensorCopySync(const Tensor& src,
                    const platform::Place& dst_place,
F
fengjiayi 已提交
457
                    Tensor* dst) {
458 459 460 461 462 463
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
464 465
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
466 467 468
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
469 470 471
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
472
  auto src_place = src.place();
473
  auto src_ptr = src.data();
474
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
475
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
476 477 478 479 480 481 482

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

483
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
F
fengjiayi 已提交
484
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
485
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
F
fengjiayi 已提交
486
  }
487 488 489 490
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {     /* custom_device -> cpu*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
491
  }                                                // NOLINT
492 493 494
  else if (platform::is_cpu_place(src_place) &&    // NOLINT
           platform::is_custom_place(dst_place)) { /* cpu -> custom_device*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
495
  }                                                 // NOLINT
496 497 498 499 500 501 502 503 504 505 506
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_custom_place(
               dst_place)) { /* custom_device -> custom_device*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
507 508 509
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
510
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
511
  }                                              // NOLINT
J
jianghaicheng 已提交
512 513
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
514
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
515
  }                                              // NOLINT
J
jianghaicheng 已提交
516 517
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
518 519 520 521 522
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
523 524 525
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
    platform::XPUPlace xpu_dst_place = dst_place;
    platform::XPUPlace xpu_src_place = src_place;
526 527 528 529
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
A
Allen Guo 已提交
530
  }       // NOLINT
J
jianghaicheng 已提交
531
  else {  // NOLINT
532 533 534 535
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
536 537 538
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
539
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
540 541 542
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
543
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
544 545 546 547 548 549 550 551
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
552
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
553 554 555 556 557 558
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
559
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
560 561
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
562
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
563
  }
564
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
565
           platform::is_cpu_place(dst_place)) {
566
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
567 568 569
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
570
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
571 572 573
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
574
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
575 576 577
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
578 579
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
F
fengjiayi 已提交
580
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
581 582 583
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
584 585
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
586
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
587 588 589
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
590 591
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
592
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
593 594 595
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
596 597
    auto src_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
598 599
    memory::Copy(
        dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size, nullptr);
600 601
  }
  else {  // NOLINT
602 603
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
604 605
  }
#endif
606 607 608
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
609
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
610 611 612
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
613
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
614 615 616 617 618 619 620 621
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
622
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
623 624 625 626 627 628
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
652 653
}

Y
Yang Yu 已提交
654 655 656 657 658 659 660
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

661 662 663
  AnyDTypeVisitor(Predicate predicate,
                  const Tensor& tensor,
                  const DevCtx& ctx,
Y
Yang Yu 已提交
664 665 666 667
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
668
  void apply() const {
Y
Yang Yu 已提交
669 670
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
671
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
672 673 674 675 676
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
677 678 679 680
inline void AnyImpl(Predicate predicate,
                    const framework::Tensor& tensor,
                    const DevCtx& ctx,
                    framework::Tensor* out) {
681 682 683
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AnyDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
Y
Yang Yu 已提交
684 685 686
}

template <typename Predicate>
687
class AnyVisitor : public std::unary_function<const Place&, bool> {
688
 private:
Y
Yang Yu 已提交
689 690 691
  const framework::Tensor& tensor_;
  Predicate predicate_;

692 693 694 695 696 697 698 699 700 701 702 703 704
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

705
 public:
Y
Yang Yu 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

719 720 721 722 723
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
724 725 726 727 728 729 730
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
731 732
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
733
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
734 735
  }

736 737 738 739 740 741
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
742 743 744 745 746
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
747

748 749 750 751 752
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
753 754 755 756
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
757 758 759 760 761

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
762 763 764 765 766 767 768

  bool GetResult(const framework::Tensor& out,
                 const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(platform::errors::Unimplemented("Not supported on place (%s) ",
                                                 custom_dev));
    return false;
  }
Y
Yang Yu 已提交
769 770
};

771
template <typename Predicate>
772
class AnyOutVisitor : public std::unary_function<const Place&, void> {
773 774 775 776 777 778
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
779 780
  AnyOutVisitor(const framework::Tensor& tensor,
                Predicate predicate,
781 782 783 784 785 786 787 788 789 790 791 792
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
793 794 795 796 797 798 799
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

800
template <typename Predicate>
801 802
inline void Any(const framework::Tensor& tensor,
                Predicate predicate,
803 804 805 806 807 808
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
809 810 811 812 813 814 815
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

816 817 818
  AllDTypeVisitor(Predicate predicate,
                  const Tensor& tensor,
                  const DevCtx& ctx,
J
Jack Zhou 已提交
819 820 821 822 823 824 825 826 827 828 829 830
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
831 832 833 834
inline void AllImpl(Predicate predicate,
                    const framework::Tensor& tensor,
                    const DevCtx& ctx,
                    framework::Tensor* out) {
835 836 837
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AllDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
J
Jack Zhou 已提交
838 839 840
}

template <typename Predicate>
841
class AllOutVisitor : public std::unary_function<const Place&, void> {
J
Jack Zhou 已提交
842 843 844 845 846 847
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
848 849
  AllOutVisitor(const framework::Tensor& tensor,
                Predicate predicate,
J
Jack Zhou 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
863 864
inline void All(const framework::Tensor& tensor,
                Predicate predicate,
J
Jack Zhou 已提交
865 866 867 868 869 870
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
871
struct ContainsNANPredicate {
Y
Yang Yu 已提交
872 873 874
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
875
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
876 877 878 879
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
880 881
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
882 883 884
  return Any(tensor, predicate);
}

885 886 887 888 889 890
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
891 892 893 894 895 896
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
897
struct ContainsInfPredicate {
Y
Yang Yu 已提交
898 899 900
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
901
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
902 903 904 905
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
906 907
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
908 909 910
  return Any(tensor, predicate);
}

911 912 913 914 915 916
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
917 918 919 920 921 922
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

923 924 925 926 927 928 929 930 931 932
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

933
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
934
template <typename T>
J
Jack Zhou 已提交
935 936
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
937 938 939
}
#endif

940
struct BothFalseVisitor : public std::unary_function<const Place&, void> {
941 942 943 944 945 946 947 948 949 950
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

951 952 953
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
954 955 956
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
957

958
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
959
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
960
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
961 962 963 964 965 966 967 968 969 970
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
971 972 973
#endif
  }

974 975 976 977
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
978 979 980 981
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

982
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
983 984 985 986 987 988 989 990
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
991 992 993 994
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
995 996 997 998 999 1000 1001 1002
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
1003
  }
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
1016 1017 1018 1019 1020

  void VisitorImpl(const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("CustomPlace is not supported"));
  }
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

1041 1042
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
Y
Yi Wang 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
1052
    desc.set_data_type(framework::TransToProtoVarType(tensor.dtype()));
1053
    auto dims = phi::vectorize(tensor.dims());
Y
Yi Wang 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
1063
    uint64_t size = tensor.numel() * framework::DataTypeSize(tensor.dtype());
Y
yuyang18 已提交
1064

1065
    auto* data_ptr = tensor.data();
1066 1067
    PADDLE_ENFORCE_LT(size,
                      (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
1068 1069
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
1070
    if (platform::is_gpu_place(tensor.place())) {
1071
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
1072 1073
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
L
Leo Chen 已提交
1074
      auto& gpu_dev_ctx = static_cast<const phi::GPUContext&>(dev_ctx);
Y
Yi Wang 已提交
1075 1076 1077 1078
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1079 1080 1081 1082 1083
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
Y
Yi Wang 已提交
1084 1085 1086 1087 1088 1089 1090
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
1091 1092
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1104 1105 1106 1107 1108
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write);
1109 1110 1111 1112 1113 1114 1115 1116
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1128 1129 1130 1131 1132
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
1133 1134 1135 1136 1137 1138 1139 1140 1141
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1153 1154 1155 1156 1157
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
1158 1159 1160 1161 1162 1163 1164 1165 1166
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
#endif
    } else if (platform::is_custom_place(tensor.place())) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& custom_device_context =
          static_cast<const platform::CustomDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1178 1179 1180 1181 1182
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                     custom_device_context.stream());
        custom_device_context.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported when not compiled with "
          "CustomDevice"));
Y
Yi Wang 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
1202 1203
  DeserializedDataFunctor(void** buf,
                          Tensor* tensor,
Y
Yi Wang 已提交
1204 1205 1206 1207
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1208
  void apply() {
Y
Yi Wang 已提交
1209 1210 1211 1212 1213 1214 1215 1216
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

1217 1218
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
T
tangwei12 已提交
1219
                      const platform::DeviceContext& dev_ctx,
1220 1221
                      const size_t& seek,
                      const std::vector<int64_t>& shape) {
T
tangwei12 已提交
1222 1223 1224 1225
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
1226 1227
      version,
      0U,
T
tangwei12 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
1240 1241
        desc.ParseFromArray(buf.get(), size),
        true,
T
tangwei12 已提交
1242 1243 1244
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
1245
    tensor->Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1246 1247 1248 1249
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
L
Leo Chen 已提交
1250
    phi::CPUContext ctx;
T
tangwei12 已提交
1251
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1252
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1253
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1254
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1255 1256
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1257
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1258
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1259
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
T
tangwei12 已提交
1260
      Tensor cpu_tensor;
1261
      cpu_tensor.Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1262 1263 1264 1265 1266 1267
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1268 1269
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1270 1271
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1272
#else
1273 1274 1275
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1276
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1277 1278
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1279 1280 1281
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1282 1283 1284
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1285
      }
T
tangwei12 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

1296 1297
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
Y
Yi Wang 已提交
1298 1299 1300
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1301
  PADDLE_ENFORCE_EQ(
1302 1303
      version,
      0U,
T
tangwei12 已提交
1304 1305 1306
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1307 1308 1309
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
Z
zlsh80826 已提交
1310
    int32_t size = -1;
Y
Yi Wang 已提交
1311
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
1312
    PADDLE_ENFORCE_EQ(
1313 1314
        is.good(),
        true,
1315 1316
        platform::errors::Unavailable("Cannot read tensor desc size"));
    PADDLE_ENFORCE_GE(
1317 1318
        size,
        0,
1319
        platform::errors::InvalidArgument("Tensor desc size should >= 0"));
Y
Yi Wang 已提交
1320 1321
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1322
    PADDLE_ENFORCE_EQ(
1323 1324
        desc.ParseFromArray(buf.get(), size),
        true,
T
tangwei12 已提交
1325
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1326 1327 1328 1329 1330
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
1331
    tensor->Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1332
    void* buf;
L
Leo Chen 已提交
1333
    phi::CPUContext ctx;
Y
Yu Yang 已提交
1334
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1335
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1336
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1337
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1338 1339
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1340
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1341
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1342
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
Y
Yi Wang 已提交
1343
      Tensor cpu_tensor;
1344
      cpu_tensor.Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1345 1346 1347
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1348
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1349 1350
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1351 1352
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1353 1354
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1355
#else
1356 1357 1358
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1359
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1360 1361
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1362 1363 1364
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1365
      } else if (platform::is_npu_place(dev_ctx.GetPlace())) {
1366 1367
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1368 1369 1370
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CutomPlace is not supported when not compiled with CustomDevice"));
1371
      }
Y
Yi Wang 已提交
1372 1373 1374 1375 1376
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1377
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1378 1379 1380 1381
    }
  }
}

6
633WHU 已提交
1382
// get tensor data point by DLDataType
1383 1384
void* GetDstPtrByDLDataType(DLDataType type,
                            framework::Tensor* dst,
6
633WHU 已提交
1385 1386
                            const platform::Place& dst_place) {
  // vector types not currently supported
1387 1388
  PADDLE_ENFORCE_LE(type.lanes,
                    1,
1389 1390
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1391 1392 1393 1394 1395 1396 1397

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1398 1399
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1400 1401
          type.code,
          type.bits));
6
633WHU 已提交
1402 1403 1404 1405 1406 1407
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1408 1409 1410
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1411 1412
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1413 1414
          type.code,
          type.bits));
6
633WHU 已提交
1415 1416 1417 1418 1419
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1420 1421
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1422 1423
          type.code,
          type.bits));
6
633WHU 已提交
1424 1425 1426 1427 1428
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1429 1430 1431 1432 1433
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1434 1435
          type.code,
          type.bits));
S
Siming Dai 已提交
1436 1437 1438 1439
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1440 1441
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1442 1443
          type.code,
          type.bits));
6
633WHU 已提交
1444
    default:
1445 1446
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1447 1448 1449 1450 1451 1452 1453 1454
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
1455 1456
  std::copy(dl_tensor.shape,
            dl_tensor.shape + dl_tensor.ndim,
6
633WHU 已提交
1457 1458
            std::back_inserter(vec));

1459
  framework::DDim vddim = phi::make_ddim(vec);
6
633WHU 已提交
1460 1461 1462 1463 1464 1465

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
1466
  auto size = phi::product(vddim) * type.bits / 8;
6
633WHU 已提交
1467

S
Siming Dai 已提交
1468
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1469 1470
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1471
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1472
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1473
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1474
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1475
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1476
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1477 1478
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
L
Leo Chen 已提交
1479 1480 1481 1482 1483 1484
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(*ctx).stream());
6
633WHU 已提交
1485 1486
  }
#endif
1487 1488 1489
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1490 1491
}

1492 1493 1494 1495 1496 1497
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1498 1499 1500 1501 1502
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1503
  os << "  - data: [";
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1518 1519 1520 1521 1522 1523
    }
  }
  os << "]";
  return os;
}

1524
template <>
1525
std::ostream& print_tensor<paddle::platform::complex<float>>(
1526
    std::ostream& os, const framework::Tensor& tensor) {
1527
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1528 1529 1530 1531
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1532
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1533
    for (int j = 1; j < element_num; ++j) {
1534 1535
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1536 1537 1538 1539 1540 1541 1542
    }
  }
  os << "]";
  return os;
}

template <>
1543
std::ostream& print_tensor<paddle::platform::complex<double>>(
1544
    std::ostream& os, const framework::Tensor& tensor) {
1545
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1546 1547 1548 1549
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1550
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1551
    for (int j = 1; j < element_num; ++j) {
1552 1553
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1554 1555 1556 1557 1558 1559
    }
  }
  os << "]";
  return os;
}

1560
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
1561 1562
  // NOTE(xiongkun):
  // https://stackoverflow.com/questions/5195512/namespaces-and-operator-resolution
1563
  // if we don't redefine, the operator << of phi / framework LoD is not found.
1564
  paddle::string::operator<<(os, lod);
1565 1566 1567
  return os;
}

1568 1569 1570
}  // namespace framework
}  // namespace paddle

1571
namespace phi {
1572

1573 1574 1575 1576 1577
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  paddle::string::operator<<(os, lod);
  return os;
}

1578
std::ostream& operator<<(std::ostream& os, const phi::DenseTensor& t) {
1579 1580 1581 1582
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1583 1584
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
1585 1586
  os << "  - layout: " << paddle::framework::DataLayoutToString(t.layout())
     << "\n";
1587

1588 1589 1590 1591 1592
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1593
  DenseTensor tensor;
1594
  tensor.Resize(t.dims());
1595
  if (paddle::platform::is_cpu_place(t.place())) {
1596 1597
    tensor.ShareDataWith(t);
  } else {
1598 1599 1600 1601
    paddle::platform::CPUPlace place;
    paddle::framework::TensorCopy(t, place, &tensor);
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
1602 1603 1604 1605
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

1606 1607 1608 1609 1610 1611 1612 1613
#define PrintTensorCallback(cpp_type, proto_type)                 \
  do {                                                            \
    if (paddle::framework::TransToProtoVarType(tensor.dtype()) == \
        proto_type) {                                             \
      os << "  - dtype: " << proto_type << "\n";                  \
      paddle::framework::print_tensor<cpp_type>(os, tensor);      \
      return os;                                                  \
    }                                                             \
1614 1615 1616 1617 1618 1619
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}
1620
}  // namespace phi