modified_huber_loss_op.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/modified_huber_loss_op.h"

namespace paddle {
namespace operators {

class ModifiedHuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& context) const override {
    PADDLE_ENFORCE_NOT_NULL(context.InputVar("X"), "X must be initialized.");
    PADDLE_ENFORCE_NOT_NULL(context.InputVar("Y"), "Y must be initialized.");

    auto* x = context.Input<Tensor>("X");
    auto* y = context.Input<Tensor>("Y");

    PADDLE_ENFORCE_EQ(x->dims(), y->dims(),
33 34 35
                      "The shape of X and Y must be the same.");
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "The tensor rank of X must be 2.");
    PADDLE_ENFORCE_EQ(x->dims()[1], 1, "The 2nd dimension of X must be 1.");
36

D
dangqingqing 已提交
37 38
    context.Output<framework::Tensor>("IntermediateVal")->Resize(x->dims());
    context.Output<framework::Tensor>("Out")->Resize({x->dims()[0], 1});
39 40 41 42 43 44 45 46
  }
};

class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ModifiedHuberLossOpMaker(framework::OpProto* proto,
                           framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
47 48 49 50 51 52
    AddInput("X",
             "The input tensor of modified huber loss op."
             "X is 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target labels of modified huber loss op."
             "The shape of Y is same as X. Values of Y must be 0 or 1.");
53
    AddOutput("IntermediateVal",
Y
yangyaming 已提交
54 55 56
              "Variable to save intermediate result which will be reused in "
              "backward processing.")
        .AsIntermediate();
57
    AddOutput("Out", "Classification loss for X.");
Y
yangyaming 已提交
58
    AddComment(R"DOC(
59 60
Modified huber loss is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of output loss.
Y
yangyaming 已提交
61 62 63 64 65 66 67
Since target Y is not differentiable, cacluating gradient for Y is illegal.
The formulation of modified huber loss is:

L(y, f(x)) = max(0, 1 - yf(x))^2  for yf(x) >= -1,
             -4yf(x)              otherwise.

Make sure the values of target label Y are in {0, 1} here. The operator will
68
scale values of Y to {-1, +1} when computing losses and gradients.
Y
yangyaming 已提交
69
)DOC");
70 71 72 73 74 75 76 77 78 79 80
  }
};

class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Input<Tensor>("Y");
81
    auto* intermediate_val = context.Input<Tensor>("IntermediateVal");
82
    auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
Y
yangyaming 已提交
83
    auto* x_grad =
D
dangqingqing 已提交
84
        context.Output<framework::Tensor>(framework::GradVarName("X"));
85

86 87
    PADDLE_ENFORCE_NOT_NULL(x, "X must be initialized.");
    PADDLE_ENFORCE_NOT_NULL(y, "Y must be initialized.");
88 89
    PADDLE_ENFORCE_NOT_NULL(intermediate_val,
                            "Intermediate value must not be null.");
90
    PADDLE_ENFORCE_NOT_NULL(out_grad, "Input(Out@Grad) must not be null.");
91 92 93

    PADDLE_ENFORCE_EQ(
        intermediate_val->dims(), x->dims(),
94 95 96
        "The shape of X and intermediate value must be the same.");
    PADDLE_ENFORCE_EQ(out_grad->dims(), x->dims(),
                      "The shape of Input(Out@Grad) and X must be the same.");
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    if (x_grad) x_grad->Resize(x->dims());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(modified_huber_loss, ops::ModifiedHuberLossOp,
            ops::ModifiedHuberLossOpMaker, modified_huber_loss_grad,
            ops::ModifiedHuberLossGradOp);

REGISTER_OP_CPU_KERNEL(
    modified_huber_loss,
    ops::ModifiedHuberLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad,
                       ops::ModifiedHuberLossGradCPUKernel<float>);