test_conv2d_fusion_op.py 5.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid.core as core
from op_test import OpTest

from test_conv2d_op import conv2d_forward_naive


class TestConv2dFusionOp(OpTest):
    def setUp(self):
        self.op_type = "conv2d_fusion"
        self.exhaustive_search = False
        self.data_format = "AnyLayout"
        self.dtype = np.float32
        self.activation = 'relu'
        self.add_bias = True
        self.add_residual_data = True
Q
qingqing01 已提交
35 36
        self.channels = None
        self.outputs = None
Q
qingqing01 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

        self.init_group()
        self.init_dilation()
        self.init_test_case()
        self.init_bias_residual()
        self.init_activation()
        self.set_search_method()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)

54 55 56
        self.output, _, _, _, _ = conv2d_forward_naive(
            input, filter, self.groups, conv2d_param)
        self.output = self.output.astype(self.dtype)
Q
qingqing01 已提交
57 58 59 60 61 62 63

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }

        if self.add_residual_data:
Q
qingqing01 已提交
64 65
            residual_data = np.random.random(self.output.shape).astype(
                self.dtype)
Q
qingqing01 已提交
66 67
            self.inputs['ResidualData'] = OpTest.np_dtype_to_fluid_dtype(
                residual_data)
Q
qingqing01 已提交
68
            self.output += residual_data
Q
qingqing01 已提交
69 70 71 72

        if self.add_bias:
            bias = np.random.random(self.filter_size[0]).astype(self.dtype)
            self.inputs['Bias'] = OpTest.np_dtype_to_fluid_dtype(bias)
Q
qingqing01 已提交
73
            self.output = self.output + bias.reshape((1, bias.size, 1, 1))
Q
qingqing01 已提交
74 75 76

        assert self.activation in ['relu', 'identity']
        if self.activation == 'relu':
Q
qingqing01 已提交
77
            self.output = np.maximum(self.output, 0)
Q
qingqing01 已提交
78 79 80 81 82 83 84 85

        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'groups': self.groups,
            'dilations': self.dilations,
            'data_format': self.data_format,
            'exhaustive_search': self.exhaustive_search,
Q
qingqing01 已提交
86 87
            'activation': self.activation,
            'split_channels': self.channels
Q
qingqing01 已提交
88
        }
Q
qingqing01 已提交
89 90 91
        self.outputs = {'Output': self.output}

        self.set_outputs()
Q
qingqing01 已提交
92

93
    def has_cuda(self):
Q
qingqing01 已提交
94 95 96
        return core.is_compiled_with_cuda()

    def test_check_output(self):
97
        if self.has_cuda():
Q
qingqing01 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            pass

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_bias_residual(self):
        self.add_bias = True
        self.add_residual_data = True

    def init_activation(self):
        self.activation = 'relu'

    def set_search_method(self):
        self.exhaustive_search = False

Q
qingqing01 已提交
127 128 129
    def set_outputs(self):
        pass

Q
qingqing01 已提交
130 131 132 133 134 135 136 137 138 139 140

class TestWithoutResidual(TestConv2dFusionOp):
    def init_bias_residual(self):
        self.add_residual_data = False


class TestIdentityActivation(TestConv2dFusionOp):
    def init_activation(self):
        self.activation = 'identity'


141 142 143 144 145 146
class TestIdentityActivation(TestConv2dFusionOp):
    def init_activation(self):
        self.activation = 'identity'
        self.add_residual_data = False


Q
qingqing01 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
class TestWithGroup(TestConv2dFusionOp):
    def init_group(self):
        self.groups = 3


class TestWithDilation(TestConv2dFusionOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3


class TestCUDNNExhaustiveSearch(TestConv2dFusionOp):
    def set_search_method(self):
        self.exhaustive_search = True


Q
qingqing01 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
class TestMultipleOutputs(TestConv2dFusionOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [1, 32, 17, 17]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [126, f_c, 3, 3]
        self.channels = [84, 42]

    def set_outputs(self):
        out1 = self.output[:, 0:84, :, :]
        out2 = self.output[:, 84:126, :, :]
        self.outputs['Outputs'] = [('out1', out1), ('out2', out2)]


Q
qingqing01 已提交
189 190
if __name__ == '__main__':
    unittest.main()