lstmp_op.cc 15.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstmp_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class LSTMPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
28
                   "Input(Input) of LSTMP operator should not be null.");
29
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
30
                   "Input(Weight) of LSTMP operator should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
32
                   "Input(ProjWeight) of LSTMP operator should not be null.");
33
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
34
                   "Input(Bias) of LSTMP operator should not be null.");
35 36

    PADDLE_ENFORCE(ctx->HasOutput("Projection"),
37
                   "Output(Projection) of LSTMP operator should not be null.");
38
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
39
                   "Output(Cell) of LSTMP operator should not be null.");
40
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
41
                   "Output(BatchGate) of LSTMP operator should not be null.");
42
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
43 44
                   "Output(BatchCellPreAct) of LSTMP operator should not be "
                   "null.");
45
    PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
46
                   "Output(BatchHidden) of LSTMP operator should not be null.");
47 48

    auto in_dims = ctx->GetInputDim("Input");
49

50 51
    PADDLE_ENFORCE_EQ(in_dims.size(), 2,
                      "Input(X)'s rank of LSTMP operator must be 2.");
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

    int frame_size = in_dims[1] / 4;
    auto w_dims = ctx->GetInputDim("Weight");
    auto proj_dims = ctx->GetInputDim("ProjWeight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], proj_dims[1],
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      proj_dims[1]);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);

    PADDLE_ENFORCE_EQ(proj_dims.size(), 2,
                      "The rank of Input(ProjWeight) should be 2.");
    PADDLE_ENFORCE_EQ(proj_dims[0], frame_size,
                      "The first dimension of Input(ProjWeight) "
                      "should be %d.",
                      frame_size);

74 75
    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
76 77
                     "Input(C0) of LSTMP operator should not be null after "
                     "Input(H0) provided.");
78 79
    }

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "4 * %d if disable peepholes connection",
                        frame_size);
    }

    framework::DDim out_dims({in_dims[0], frame_size});
    framework::DDim proj_out_dims({in_dims[0], proj_dims[1]});
    ctx->SetOutputDim("Projection", proj_out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
103
    ctx->SetOutputDim("BatchHidden", out_dims);
104 105 106 107 108 109 110 111
    ctx->ShareLoD("Input", "Projection");
    ctx->ShareLoD("Input", "Cell");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
112
        ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
113 114 115 116 117
  }
};

class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
118
  void Make() override {
119
    AddInput("Input",
Y
Yibing Liu 已提交
120
             "(LoDTensor) the input for sequence data, which supports "
121 122 123 124 125 126 127 128 129 130 131
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
             "batch size and D is the hidden size.")
        .AsDispensable();
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
132
             "batch size. `C0` should not be null if `H0` provided.")
133 134 135
        .AsDispensable();
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
Y
Yibing Liu 已提交
136 137
             " - The shape is (P x 4D), where P is the projection layer size "
             "and  D is the hidden size."
138 139
             " - Weight = {W_cr, W_ir, W_fr, W_or}");
    AddInput("ProjWeight",
Y
Yibing Liu 已提交
140
             "(Tensor) the learnable weight of the projection layer."
141
             " - The shape is (D x P), where P is the recurrent projection "
Y
Yibing Liu 已提交
142 143
             "layer size and  D is the hidden size."
             " - ProjWeight = {W_rh}");
144
    AddInput("Bias",
Y
Yibing Liu 已提交
145 146 147
             "(Tensor) the learnable biases, which contains two parts: "
             "input-hidden biases and peephole connections weights if "
             "setting `use_peepholes` to `True`. "
148 149 150 151 152 153 154 155
             "1. `use_peepholes = False` "
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
             "2. `use_peepholes = True` "
             " - The shape is (1 x 7D). "
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
    AddOutput("Projection",
              "(LoDTensor) the projection of the hidden state of LSTMP "
Y
Yibing Liu 已提交
156
              "operator. The shape is (T x P), and LoD is the same with the "
157 158 159 160 161 162
              "`Input`.");
    AddOutput("Cell",
              "(LoDTensor) the cell state of LSTMP operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yibing Liu 已提交
163 164 165 166 167
              "and output gate after the activations. This LoDTensor has the "
              "same shape as the reorganized input, which is also be called "
              "batch input. The LoD size is 2. The first-level LoD is the "
              "batch offsets and the second contains the indices, which "
              "denotes the position of reorganized sequence in the raw input.")
168 169
        .AsIntermediate();
    AddOutput("BatchCellPreAct",
Y
Yibing Liu 已提交
170 171 172
              "(LoDTensor) the pre-activation cell state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
173
        .AsIntermediate();
174
    AddOutput("BatchHidden",
Y
Yibing Liu 已提交
175 176 177
              "(LoDTensor) the hidden state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
178
        .AsIntermediate();
179 180 181 182 183 184 185 186
    AddAttr<bool>("use_peepholes",
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
    AddAttr<bool>("is_reverse",
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTMP.")
        .SetDefault(false);
187 188 189 190 191 192 193 194 195 196
    AddAttr<float>("cell_clip",
                   "(float, defalut: 0.0) "
                   "Clip for Tensor for cell state tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
    AddAttr<float>("proj_clip",
                   "(float, defalut: 0.0) "
                   "Clip for Tensor for projection tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    AddAttr<std::string>(
        "gate_activation",
        "(string, default: sigmoid)"
        "The activation for input gate, forget gate and output "
        "gate, `sigmoid` by default.")
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("cell_activation",
                         "(string, default: tanh)"
                         "The activation for cell output, `tanh` by defalut.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("candidate_activation",
                         "(string, default: tanh)"
                         "The activation for candidate hidden state, "
                         "`tanh` by default.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
215 216 217 218 219 220
    AddAttr<std::string>("proj_activation",
                         "(string, default: tanh)"
                         "The activation for projection output, "
                         "`tanh` by defalut.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
221
    AddComment(R"DOC(
Y
Yibing Liu 已提交
222
Long-Short Term Memory with recurrent Projection layer (LSTMP) Operator.
223

Y
Yibing Liu 已提交
224 225 226 227 228
LSTMP has a separate projection layer after the LSTM layer, projecting the 
original hidden state to a lower-dimensional one, which is proposed to reduce 
the number of total parameters and furthermore computational complexity for 
the LSTM, espeacially for the case that the size of output units is relative 
large (https://research.google.com/pubs/archive/43905.pdf). 
229

230 231 232
The formula is as follows:

$$
233
i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i) \\
234

235
f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f) \\
236

237
\tilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c) \\
238

239
o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o) \\
240

241
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
Y
Yibing Liu 已提交
242

243
h_t = o_t \odot act_h(c_t) \\
244

Y
Yibing Liu 已提交
245
r_t = \overline{act_h}(W_{rh}h_t)
246 247 248 249 250 251 252
$$

where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
Y
Yibing Liu 已提交
253
is the activation, such as logistic sigmoid function, and
254 255
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
Y
Yibing Liu 已提交
256 257 258 259
the cell output activation vector $h$. Here $h$ is usually called the hidden 
state and $r$ denotes its recurrent projection. And $\tilde{c_t}$ is also 
called the candidate hidden state, whose computation is based on the current 
input and previous hidden state.
260 261 262

The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
263 264
used for them. $\overline{act_h}$ is the activation function for the 
projection output, usually using `identity` or same as $act_h$.
265 266 267

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Y
Yibing Liu 已提交
268
Users can choose to use fully-connected operator before LSTMP operator.
269 270 271 272 273

)DOC");
  }
};

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
class LSTMPGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
    grad_op->SetType("lstmp_grad");
    grad_op->SetInput("Weight", Input("Weight"));
    grad_op->SetInput("ProjWeight", Input("ProjWeight"));
    grad_op->SetInput("Bias", Input("Bias"));

    grad_op->SetInput("Projection", Output("Projection"));
    grad_op->SetInput("Cell", Output("Cell"));
    grad_op->SetInput("BatchGate", Output("BatchGate"));
    grad_op->SetInput("BatchCellPreAct", Output("BatchCellPreAct"));
    grad_op->SetInput("BatchHidden", Output("BatchHidden"));
    grad_op->SetInput("H0", Input("H0"));
    grad_op->SetInput("C0", Input("C0"));

    grad_op->SetInput(framework::GradVarName("Projection"),
                      OutputGrad("Projection"));

    grad_op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    grad_op->SetOutput(framework::GradVarName("Weight"), InputGrad("Weight"));
    grad_op->SetOutput(framework::GradVarName("ProjWeight"),
                       InputGrad("ProjWeight"));
    grad_op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    grad_op->SetOutput(framework::GradVarName("H0"), InputGrad("H0"));
    grad_op->SetOutput(framework::GradVarName("C0"), InputGrad("C0"));

    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

310 311 312 313 314
class LSTMPGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
315
    PADDLE_ENFORCE(ctx->HasInput("Projection"),
316
                   "Input(Projection) of LSTMP operator should not be null.");
317
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
318
                   "Input(Cell) of LSTMP operator should not be null.");
319
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
320
                   "Input(Weight) of LSTMP operator should not be null.");
321
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
322
                   "Input(ProjWeight) of LSTMP operator should not be null.");
323
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
324
                   "Input(Bias) of LSTMP operator should not be null.");
325 326

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
327
                   "Input(BatchGate) of LSTMP operator should not be null.");
328
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
329
                   "Input(BatchGate) of LSTMP operator should not be null.");
330 331 332 333 334 335 336

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

337 338
    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("BatchGate"));
339
    SetOutGradDim("Weight");
340
    SetOutGradDim("ProjWeight");
341 342 343 344 345 346 347 348 349
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
350 351
        ctx.Input<framework::LoDTensor>("BatchGate")->type(),
        ctx.device_context());
352 353 354 355 356 357 358
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
359
REGISTER_OPERATOR(lstmp, ops::LSTMPOp, ops::LSTMPOpMaker, ops::LSTMPGradMaker);
360
REGISTER_OPERATOR(lstmp_grad, ops::LSTMPGradOp);
361 362 363 364 365 366
REGISTER_OP_CPU_KERNEL(
    lstmp, ops::LSTMPKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstmp_grad, ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, double>);