huber_loss_op.cc 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/huber_loss_op.h"
16 17 18
#include <memory>
#include <string>
#include <vector>
Y
yangyaming 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27 28 29
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must be initialized.");
Y
yangyaming 已提交
30

31 32
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
33

34
    PADDLE_ENFORCE_EQ(x_dims.size(), 2,
35 36
                      "The rank of Input(X) must be 2 and the shape is "
                      "[batch_size, 1].");
P
phlrain 已提交
37 38
    if (ctx->IsRuntime() ||
        (framework::product(x_dims) > 0 && framework::product(y_dims) > 0)) {
P
phlrain 已提交
39 40 41 42 43 44 45
      PADDLE_ENFORCE_EQ(x_dims, y_dims, "Shape of X and Y should be same");
    }
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[1], 1,
                        "Each row of Input(X) contains a real value, "
                        "so the 2nd dimension of Input(X) must be 1.");
    }
Y
yangyaming 已提交
46

47 48 49
    ctx->SetOutputDim("Residual", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->ShareLoD("X", "Out");
Y
yangyaming 已提交
50 51 52 53 54 55
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
56
  void Make() override {
57 58 59 60 61 62
    AddInput("X",
             "The input value of huber loss op."
             "X is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target value of huber loss op."
             "Y is a 2-D tensor with shape [batch_size, 1].");
63
    AddOutput("Residual",
64
              "Intermediate tensor to cache residual value between Y and X."
65
              "The shape is same as Input(X) and will be reused in backward.")
Y
yangyaming 已提交
66
        .AsIntermediate();
67
    AddOutput("Out",
K
kexinzhao 已提交
68 69
              "The output tensor with shape [batch_size, 1] "
              "which represents the huber loss.");
Y
yangyaming 已提交
70 71
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
K
kexinzhao 已提交
72 73
HuberLoss Operator.

74 75 76 77
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
shape of X and Y are [batch_size, 1]. The equation is:
Y
yangyaming 已提交
78

79
$$
Y
yangyaming 已提交
80
Out_{\delta}(X, Y)_i =
81
\begin{cases}
Y
yangyaming 已提交
82 83 84
0.5 * (Y_i - X_i)^2,
\quad |Y_i - X_i| \leq \delta \\
\delta * (|Y_i - X_i| - 0.5 * \delta),
85
\quad otherwise
86
\end{cases}
87
$$
Y
yangyaming 已提交
88

Y
yangyaming 已提交
89 90 91
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.

Y
yangyaming 已提交
92 93 94 95 96 97 98 99
)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

100 101 102 103 104 105 106 107 108
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");

    auto residual_dims = ctx->GetInputDim("Residual");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
109
      ctx->SetOutputDim(x_grad_name, residual_dims);
110 111
    }
    if (ctx->HasOutput(y_grad_name)) {
112
      ctx->SetOutputDim(y_grad_name, residual_dims);
113
    }
Y
yangyaming 已提交
114 115 116
  }
};

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class HuberLossGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("huber_loss_grad");
    op->SetInput("Residual", Output("Residual"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

Y
yangyaming 已提交
134 135 136 137
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
138
REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
139
                  ops::HuberLossGradOpDescMaker);
140
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
Q
QI JUN 已提交
141
REGISTER_OP_CPU_KERNEL(
142 143
    huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
Y
yangyaming 已提交
144 145
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
146 147
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);