test_one_hot_op.py 5.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang yaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yang yaming 已提交
17 18 19
import unittest
import numpy as np
import math
20
from op_test import OpTest
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.framework import Program, program_guard
Y
Yang yaming 已提交
25 26 27 28 29 30


class TestOneHotOp(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
31
        depth_np = np.array(10).astype('int32')
Y
Yang yaming 已提交
32
        dimension = 12
33
        x_lod = [[4, 1, 3, 3]]
34
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_attr(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
59 60 61 62

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

63
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
64 65 66
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
67
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
Y
Yang yaming 已提交
68 69 70 71 72 73 74
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_default_dtype(OpTest):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        depth_np = np.array(10).astype('int32')
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_default_dtype_attr(OpTest):
Y
Yang yaming 已提交
99 100 101 102
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
103
        x_lod = [[4, 1, 3, 3]]
104
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
105
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
106 107 108 109

        out = np.zeros(shape=(np.product(x.shape[:-1]),
                              depth)).astype('float32')

110
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
        self.check_output()


class TestOneHotOp_exception(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        self.depth = 10
        self.place = core.CPUPlace()
        self.dimension = 12
        self.x = core.LoDTensor()
128
        x_lod = [[4, 1, 3, 3]]
129
        data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
130
        data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
131
        self.x.set(data, self.place)
132
        self.x.set_recursive_sequence_lengths(x_lod)
Y
Yang yaming 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

    def test_check_output(self):
        program = Program()
        with program_guard(program):
            x = fluid.layers.data(
                name='x', shape=[self.dimension], dtype='float32', lod_level=1)
            block = program.current_block()
            one_hot_out = block.create_var(
                name="one_hot_out",
                type=core.VarDesc.VarType.LOD_TENSOR,
                dtype='float32')
            block.append_op(
                type='one_hot',
                inputs={'X': x},
                attrs={'depth': self.depth},
                outputs={'Out': one_hot_out})
            exe = fluid.Executor(self.place)

            def run():
                exe.run(feed={'x': self.x},
                        fetch_list=[one_hot_out],
                        return_numpy=False)

            self.assertRaises(core.EnforceNotMet, run)


if __name__ == '__main__':
    unittest.main()